Development of an Indirect Tams1 Enzyme-Linked Immunosorbent Assay for Diagnosis of Theileria annulata Infection in Cattle

MARC-JAN GUBBELS, CHRISTINE D’OLIVEIRA,† AND FRANS JONGEJAN*

Department of Parasitology and Tropical Veterinary Medicine, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands

Received 1 November 1999/Returned for modification 5 January 2000/Accepted 3 February 2000

An enzyme-linked immunosorbent assay (ELISA) was developed based on a recombinant major Theileria annulata merozoite surface antigen, Tams1. Four different recombinant proteins derived from two different Tams1 alleles, both in two different truncated forms, were tested for their performance in the ELISA. Furthermore, antigen concentration, various buffers, washing protocol, and the choice of anti-total-immunglobulin G (IgG), anti-IgG1, or anti-IgG2 as second antibody were evaluated. The performance of the resulting ELISA was analyzed by measuring the coefficient of variation (CV). A total of 22 sera were analyzed over the measurement range, resulting in a CV of ca. 10%, whereas 30% variation is the maximum acceptable. The cutoff value was determined by the two-graph receiver operating characteristic (TG-ROC), using the indirect fluorescent antibody test (IFAT) as a reference. It was shown that up to 3 months postinfection (p.i.) IFAT is more sensitive and specific, whereas beyond 3 months p.i. ELISA performed as well as IFAT. The cutoff was determined at maximal sensitivity, based on the TG-ROC after 3 months p.i. Nine calves experimentally infected with four different T. annulata stocks remained positive in the ELISA for at least 1 year p.i. Finally, limited cross-reaction was found only with T. parva antisera, but not with any other Theileria or Babesia species. Since the T. parva endemic area hardly overlaps with T. annulata, the Tams1 ELISA has the potential to become a useful tool in the epidemiology of tropical theileriosis.

The protozoan parasite Theileria annulata is the causative agent of tropical theileriosis and is endemic in the area around the Mediterranean and the Middle East and reaches the Southern parts of Asia (4). Transmission of the parasite to cattle takes place during a bloodmeal of infected ticks of the genus Hyalomma. Currently, the disease is kept under control by acaricides preventing tick infestation and attenuated vaccines, which are used in several areas where the disease is endemic. The parasite can be detected in ticks and cattle with a species-specific PCR (6, 7), and serodiagnosis in cattle is performed by an indirect fluorescent antibody test (IFAT) (33). Both techniques are impractical for large-scale epidemiological surveys. Moreover, cross-reactions have been observed with IFAT among several Theileria species (27) and, like PCR, IFAT is laborious.

Enzyme-linked immunosorbent assay (ELISA) is easier to perform, inexpensive, and would be useful for monitoring cattle for exposure to tropical theileriosis and facilitate the study of the epidemiology of the disease. Previous efforts to develop an ELISA for T. annulata were based on purified schizont or piroplasm antigen. The first attempt did not result in a high sensitivity or high specificity (25), whereas the second ELISA performed well (26). It is difficult, however, to standardize antigen purified from crude parasite material, and there is also the requirement of experimental animals for parasite production. Therefore, two ELISAs based on recombinant proteins have been developed: one uses the merozoite rhoptry antigen (18), whereas the other is based on a sporozoite antigen, SPAG-1 (2). However, the sensitivity and specificity of both tests has not been determined.

The immunodominant merozoite surface antigen Tams1-1 has been expressed in Escherichia coli (8, 35) and also used as a candidate for an ELISA (23). We report here the further characterization of the Tams1 ELISA by examining four recombinant proteins: two different allelic variants (Tams1-1 and Tams1-2) in two different truncated forms. The use of two different Tams1 allelic variants is based on the observation that Tams1 is a highly variable protein, and evidence for incomplete serological cross-reaction between allelic variants has been reported (26). Therefore, it could be that T. annulata infections not containing the particular Tams1 allele used in the ELISA are misdiagnosed. In one truncated form the signal peptide is not expressed since it is functional in the parasite wherein it is cleaved off during the transport process to the membrane and thus probably not involved in the development of an immune response. The second form is also expressed without signal peptide but, in addition, the membrane anchor domain is deleted. This domain is very hydrophobic and therefore probably contains no B-cell epitope either. Furthermore, the antigen concentration, buffer, washing protocol, and immunoglobulin G (IgG) class of second antibodies were optimized. Variation of second antibody is based on the observation that some animals have a heritable high concentration of IgG2 in their blood (38) which might lead to false-positive reactions in the ELISA. Therefore, an ELISA based on IgG1 only is preferred, since IgG2 can also agglutinate particulate antigens, whereas IgG1 cannot (42). The cutoff value resulting in both maximal sensitivity and specificity was determined by two-graph receiver operating characteristic (TG-ROC) analysis, ROC plots, efficiency, Youden’s index, and likelihood ratios (13, 14). The repeatability of the ELISA was determined by calculating the coefficient of variation (CV) (21). The intraclass correlation coefficient (R_{icc}) value was calculated to compare the signal of the same sample on different plates and different days (10).
concentration of 1 μg/ml in 50 mM carbonate buffer (pH 9.6) for 1 h at 37°C. Blocking was performed with 500 mM NaCl containing incubation buffer (PBS containing 1% skimmed milk powder [Nutricia, Zoetermeer, The Netherlands], 0.1% Tween 20, and an end concentration of 500 mM NaCl) for 30 min at 37°C. Serum conjugate (rabbit anti-bovine IgG [Sigma, Göttingen, Germany; Nordic, Tilburg, The Netherlands]) were diluted 1:200 and 1:500, respectively, in 500 mM NaCl incubation buffer and incubated for 1 h at 37°C. Plates were washed three times with 0.05% Tween 20 after serum and conjugate incubation with a plate washer (Microplate Autowasher EL 404; Bio-Tek Instruments, Inc., Winooski, Wis.). Peroxidase-mediated color development was performed for 30 min at room temperature in 100 mM NaHPO4·50 mM citric acid buffer (pH 5.0) containing 0.5 mg of ABTS [2',2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) dihydrochloride; Sigma, St. Louis, Mo.] per ml and 0.0075% hydrogen peroxide (Merck, Darmstadt, Germany). The absorbance was read at 405 nm using a Ceres UV900C ELISA reader (Bio-Tek Instruments, Inc.).

ELISA results are presented as the percent positivity (PP) of a quadruple measurement on each plate of a high positive control serum in order to facilitate comparison of plates that are always subjected to small variations. This sample was obtained from calf 343 at 9 weeks after infection with the Mauritanian T. annulata isolate. Each plate included a quadruple measurement of a standard negative serum, i.e., calf 396, reflecting the mean value of the group of 16 negative animals. Initially, the cutoff was determined by doubling the mean of the negative controls. Where specifically indicated, the complement system in the sera was inactivated by incubating 100 μl of undiluted serum at 56°C for 30 min. Again, where indicated, diluted sera were incubated prior to application on the ELISA plate with E. coli proteins purified from bacteria containing the empty plasmid in concentrations of 0.5, 1.0, 2.0, and 4.0 μg/ml in combination with serum dilutions ranging from the sample set. In essence, for each serum the multiple PP measurements measured in eight duplicates on the same plate on eight different days. The CV range, including both extremes, was calculated as follows:

\[
\text{CV} = \frac{\text{mean} \times 100}{\text{standard deviation}}
\]

The optimized protocol was as follows. T.annulata-1 antigen was used at a concentration of 1 μg/ml in 50 mM carbonate buffer (pH 9.6) for 1 h at 37°C.

MATERIALS AND METHODS

Antigen production.

Four different recombinant proteins based on two allelic variants of Tams1 were used as candidates for the ELISA, and two different truncated forms from both proteins were tested: Tams1-1 and Tams1-2 without signal peptide encoded by, respectively, pETTams1-1 and pETTams1-2 (8). Truncated Tams1 proteins were expressed as His6-tagged proteins in E. coli and purified as described elsewhere (8). Briefly, truncated forms from both proteins were tested; Tams1-1 and Tams1-2 without insert.

Experimental infections and test sera.

Tick-negative calves were infected with three different isolates per animal with T. annulata, two calves were infected with two different isolates. Details of all parasite stocks used in this study as well as the number of animals infected with each stock are listed in Table 1. Sera were collected for at least 12 weeks postinfection. Infection with blood stages was obtained from calf 343 at 9 weeks after infection with the Mauritanian T. annulata isolate. Each plate included a quadruple measurement of a standard negative serum, i.e., calf 396, reflecting the mean value of the group of 16 negative animals. Initially, the cutoff was determined by doubling the mean of the negative controls. Where specifically indicated, the complement system in the sera was inactivated by incubating 100 μl of undiluted serum at 56°C for 30 min. Again, where indicated, diluted sera were incubated prior to application on the ELISA plate with E. coli proteins purified from bacteria containing the empty plasmid in concentrations of 0.5, 1.0, 2.0, and 4.0 μg/ml in combination with serum dilutions ranging from the sample set. In essence, for each serum the multiple PP measurements measured in eight duplicates on the same plate on eight different days. The CV range, including both extremes, was calculated as follows:

\[
\text{CV} = \frac{\text{mean} \times 100}{\text{standard deviation}}
\]

The optimized protocol was as follows. T.annulata-1 antigen was used at a concentration of 1 μg/ml in 50 mM carbonate buffer (pH 9.6) for 1 h at 37°C.

TABLE 1. Theileria and Babesia isolates used for ELISA validation

<table>
<thead>
<tr>
<th>Species</th>
<th>Isolate</th>
<th>No. of animals tested</th>
<th>Stabile</th>
<th>Reference of stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. annulata</td>
<td>Ankara</td>
<td>14</td>
<td>GUTS</td>
<td>34</td>
</tr>
<tr>
<td>T. annulata</td>
<td>Bahrain</td>
<td>3</td>
<td>Ticks</td>
<td>41</td>
</tr>
<tr>
<td>T. annulata</td>
<td>Spain</td>
<td>3</td>
<td>Ticks</td>
<td>6</td>
</tr>
<tr>
<td>T. annulata</td>
<td>Hisar</td>
<td>13</td>
<td>GUTS</td>
<td>12</td>
</tr>
<tr>
<td>T. annulata</td>
<td>Mauritania</td>
<td>2</td>
<td>Ticks</td>
<td>22</td>
</tr>
<tr>
<td>T. annulata</td>
<td>Hisar/Gharb/Ankara</td>
<td>8</td>
<td>GUTS</td>
<td>32</td>
</tr>
<tr>
<td>T. annulata</td>
<td>Ankara/Hisar</td>
<td>2</td>
<td>Ticks</td>
<td>GUTS</td>
</tr>
<tr>
<td>T. velfierà</td>
<td>Lagarina</td>
<td>1</td>
<td>Ticks</td>
<td>Unpublished</td>
</tr>
<tr>
<td>T. velfierà</td>
<td>Dar es Salaam</td>
<td>1</td>
<td>Ticks</td>
<td>39</td>
</tr>
<tr>
<td>T. tauronti</td>
<td>Idobogo</td>
<td>1</td>
<td>Ticks</td>
<td>40</td>
</tr>
<tr>
<td>T. buffeli</td>
<td>England</td>
<td>1</td>
<td>Ticks</td>
<td>31</td>
</tr>
<tr>
<td>T. buffeli</td>
<td>Japan</td>
<td>1</td>
<td>Ticks</td>
<td>20</td>
</tr>
<tr>
<td>T. buffeli</td>
<td>Australia</td>
<td>1</td>
<td>Ticks</td>
<td>31</td>
</tr>
<tr>
<td>T. parva</td>
<td>Pugui 2</td>
<td>1</td>
<td>GUTS</td>
<td>40</td>
</tr>
<tr>
<td>T. parva</td>
<td>Boleni</td>
<td>1</td>
<td>GUTS</td>
<td>29</td>
</tr>
<tr>
<td>T. parva</td>
<td>Muguga</td>
<td>3</td>
<td>GUTS</td>
<td>3</td>
</tr>
<tr>
<td>T. parva</td>
<td>Marikebuni</td>
<td>1</td>
<td>GUTS</td>
<td>19</td>
</tr>
<tr>
<td>B. bovis</td>
<td>Mexico</td>
<td>1</td>
<td>Blood</td>
<td>1</td>
</tr>
<tr>
<td>B. bigemina</td>
<td>Muguga</td>
<td>1</td>
<td>Blood</td>
<td>Unpublished</td>
</tr>
</tbody>
</table>
measurement range was divided into 250 intervals, and in each interval sensitivity, specificity, efficiency, Youden's index, or LRs were calculated. Cutoffs were determined at maximum specificity and sensitivity for each analysis by using a negative serum panel of 50 different animals and two positive serum panels. The first IFAT-positive panel consisted of sera collected in the first 3 months p.i. from 45 different animals, and the second panel consisted of sera collected after 3 months p.i. from 30 different animals. A serum sample from one time point in the indicated period was randomly selected for each animal.

RESULTS

Optimization of conditions. Antigen concentration and serum and conjugate dilutions were varied in order to reach maximum differences between optical density (OD) values of negative and positive sera in the ELISA. Under the optimized conditions, seroconversion could be measured in all of the T. annulata-infected animals listed in Table 1. Some minor variations in absolute OD values between the different recombinant proteins was observed, but the time until seroconversion values were identical. The negative panel of 169 animals resulted for all four proteins in six false-positive reactions using 2 times the mean of the negative panel as a cutoff. Since all four proteins reacted identically, pETams1-1, the Tams1-1 construct without both the N- and C-terminal domains, was selected because of its highest expression and the most efficient way it could be purified. In order to reduce the number of false-positive reactions, different concentrations of NaCl and Tween, as well as different washing procedures, were evaluated. Only the NaCl concentration influenced the ELISA performance (Fig. 1). The optimum was deduced at 500 mM NaCl so that the low-positive sera remained positive and only three false-positives remained. To rule out that false-positive reactions of naive animals were due to cross-reactivity with residual E. coli proteins in the recombinant antigen, diluted sera were preincubated with protein from E. coli, purified identically to the antigen. This did not reduce the number of false-positive reactions. The potential effect of complement in the sera was circumvented by inactivation of the complement system by heating the sera to 56°C prior to dilution. This also did not result in a reduction in the number of false-positive sera.

Another attempt to improve ELISA performance was undertaken by measuring IgG isotype responses. Initially, total IgG was measured, but in animals with high innate IgG2 levels this can lead to a false-positive reaction. Sheep anti-bovine
IgG1 and IgG2 were directly conjugated since secondary rabbit anti-sheep antibody cross-reacted with cattle immunoglobulins. Detected IgG2 levels did not relate very well with T. annulata infection, and low- and intermediately positive sera became negative. In general, a very high background was observed with anti-IgG2 antibody. Measuring IgG1 levels reduced the number of correctly diagnosed positive sera (data not shown). A monoclonal mouse anti-bovine IgG1 was tested as well but also resulted in values below the cutoff for low-positive sera. On the basis of these results the rabbit anti-bovine total IgG was selected for the Tams1 ELISA.

A negative serum (serum 596) with an OD value equal to the mean of the panel of negative sera was selected and included on all plates as an internal control for the correct determination of the cutoff (two times the level of the negative control) value for sera in individual plates. A high-T. annulata-positive serum (serum 343, 9 weeks p.i.) was also included to set measured ODs at 100% in order to compare different plates. Measured OD values are expressed as the PP of the positive control.

Repeatability. Twenty-two sera covering the measurement range were used to evaluate ELISA performance on the same day in eight duplicates and on eight different days. From these repeated measurements the CV was calculated (Fig. 2). According to Jacobson (21), a CV of <30% is acceptable, and this is the case for all of the samples tested. From the same data set the mean R_{inc} was determined to be 45.4% using ANOVA analysis.

TG-ROC analysis. TG-ROC analysis was performed in order to determine the optimal cutoff value for the ELISA resulting in maximum specificity and sensitivity with the IFAT as a reference. When a set of 238 positive and negative samples was measured blindly, some false-negative results were found at under 3 months p.i. However, beyond 3 months p.i. all T. annulata-infected sera tested positive, using twice the mean of the negative sera panel as a cutoff value. Using these 238 sera in TG-ROC resulted in a cutoff at which low sensitivity and specificity was reached so that false-negative and false-positive results were generated. Therefore, it was decided to perform TG-ROC analysis on two groups of sera: IFAT-positive sera before 3 months p.i. and IFAT-positive sera after 3 months p.i. In the first period a group of 50 negative sera and 45 positive sera derived from different animals was analyzed. As seen in Fig. 3A, the best cutoff was at 10.6 PP, leading to a sensitivity and specificity of 87% with an intermediate range (IR) of

![FIG. 3. TG-ROC analysis of the Tams1 ELISA results for <3 months p.i. (A) and >3 months p.i. (B). The intermediate range (IR) is determined by the cutoff values at 95% sensitivity (Se) and 95% specificity (Sp).](http://www.asm.org/)

![FIG. 4. ROC plots of Tams1 ELISA results for <3 months p.i. (A) and >3 months p.i. (B). The graph in panel B falls precisely over the left y axis and the top x axis.](http://www.asm.org/)
between 10.2 and 11.8 PP using a 95% confidence interval. In the second group, the same animals as in group 1 from which sera were collected after 3 months p.i. (50 negative sera and 30 positive sera) were analyzed by TG-ROC (Fig. 3B), leading to 100% sensitivity and specificity at a cutoff of 12.7 PP. This cutoff value was identical to the previously used cutoff determined by the mean of the serum panel from the 169 uninfected calves. Further analysis using ROC plots (Fig. 4), Youden’s index and efficiency ratio (Fig. 5), and LRs (Fig. 6) led to similar results for both periods. In the period under 3 months p.i., the AUC in the ROC plot was estimated to be 0.85, indicating a nonideal performance. The defined cutoffs as determined by Youden’s index (0.79) and efficiency ratio (0.90) were 10.4 and 10.7 PP, respectively, neither of which is ideal. In the period after 3 months p.i., both the Youden’s index and the efficiency ratio were 1.0 (the ideal value for a diagnostic test) at 12.5 PP. The AUC of the ROC plot (Fig. 4B) for the period over 3 months p.i. was 1.0, indicating 100% specificity and sensitivity. An ideal cutoff obtained from the LR plot (Fig. 6B) was 12.6 PP. Taking all of these values into account, a consensus cutoff was set at 12.6 PP, leading to no false-positive results over the entire infection period during which the animals were monitored. This cutoff was identical to twice the mean of the negative serum panel of 169 calves. In the panel of 169 negative animals, three false-positive results remained, leading to a specificity of 98%.

Species specificity. Sera collected from experimentally infected calves with parasites other than *T. annulata* (Table 1) were analyzed at several time points p.i. with the Tams1 ELISA by using the optimized conditions described above. Antisera positive for *T. velifera*, *T. taurostagi*, *T. buffeli*, *B. bovis*, and *B. bigemina* resulted in values below the determined cutoff point. Measurement of sera collected from six calves infected with four different *T. parva* isolates resulted in OD values greater than the cutoff level in three calves. Cross-reacting sera were derived from calves infected by the Marikebuni and Pugu-2 *T. parva* isolates.

Comparison of IFAT and ELISA. Four different *T. annulata* strains tested in nine different animals (one, Ankara; three, Bahrain; two, Mauritania; three, Spain) from which sera collected weekly for a prolonged period were analyzed by both IFAT and ELISA (Fig. 7). All animals became positive at between 1 and 8 weeks p.i. in both assays. In one case, calf 119 was positive in IFAT 1 week before the ELISA using 12.6% PP as the cutoff for the ELISA (Fig. 7A). ELISA resulted in a...
positive reaction 1 week earlier in calf 178 (Fig. 7E). In calves 165 and 293 (Fig. 7I and F, respectively), the ELISA reaction was above the cutoff starting at 1 week p.i., while the IFAT was still negative. In general, ELISA remained positive over the period studied, where the latest sample point was at 65 weeks p.i. for calf 178 (Fig. 7E). IFAT titer and ELISA results do not correlate with each other since some animals reacted more strongly in the IFAT than in the ELISA (Fig. 7A and D), whereas others reacted more strongly in the IFAT than in the ELISA (Fig. 7B). However, the observed trends in the rise and fall of antibody response in both assays were comparable.

DISCUSSION
The ELISA based on a truncated Tams1-1 antigen was shown to be a specific and sensitive assay for the detection of T. annulata antibodies. Although Tams1 is a highly variable protein since multiple alleles are found within (26) and be-
between isolates (J. M. Gubbels, F. Katzer, G. Hide, F. Jongejan, and B. R. Shiel, unpublished results), this does not seem to interfere with the detection of specific antibodies. In conclusion, at least some epitopes must be conserved in all Tams1 variants enabling its detection by ELISA. Further evidence for conserved epitopes in at least the two allelic variants used here is provided by the observation that comparable ELISA results were obtained for both Tams1 allelic variants.

The results obtained using anti-IgG1 or anti-IgG2 instead of anti-total IgG show that the measured Tams1 antibody response is not strictly originating in either IgG1 or IgG2. Probably both isotypes are involved, but nothing is known about the specificity, the six false-positive reacting sera derived from IgG isotype responses during infection, at least some epitopes must be conserved in all Tams1 allelic variants.

In conclusion, the Tams1 ELISA could become a useful tool to study the epidemiology of tropical theileriosis. It has to be noted that the ELISA has been validated using defined animals under controlled conditions and does not represent the actual field situation. Influences of sex, age, or breed are some of the other factors to consider in diagnostic assays (15). The robustness of the Tams1 ELISA will thus only be fully revealed by testing larger numbers of animals kept under field conditions.

ACKNOWLEDGMENTS

This work was supported by a grant from the European Union, Directorate General XII, INCO-DC Program, contract no. IC18-CT95-0003 (entitled “Application of Recombinant DNA Technology to Vaccination, Diagnosis and Epidemiology of Tropical Theileriosis”). Additional support was provided by the ICTTD Concerted Action Project on Integrated Control of Ticks and Tick-borne Diseases, also supported by the INCO-DC Program of the European Union under contract no. IC18-CT95-0009.

We thank Duncan Brown and Suzanne Williamson of the Centre for Tropical Veterinary Medicine in Edinburgh for the kind supply of negative and positive test sera, Martin Mboloï for his help with the TG-ROC analysis, and Albert W. C. A. Cornelissen for his support throughout this study and for his critical review of the manuscript.

REFERENCES

