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HIV� subjects on optimal antiretroviral therapy have persistently impaired antibody responses to pneumococcal vaccination.
We explored the possibility that this effect may be due to HIV protease inhibitors (PIs). We found that in humans and mice, PIs
do not affect antibody production in response to pneumococcal vaccination.

Despite available vaccines, Streptococcus pneumoniae remains
the most common cause of bacterial pneumonia worldwide

(1). The bacterium is surrounded by capsular polysaccharides
(PSs), which are major determinants of virulence and immuno-
genicity (2). The existing vaccines against S. pneumoniae, the 23-
valent PS vaccine (PPV) and 13-valent PS-conjugated vaccine
(PCV), contain PSs of 23 and 13 serotypes of S. pneumoniae, re-
spectively. Anti-PS antibodies induced by both vaccines provide
serotype-specific protection against invasive pneumococcal dis-
ease (IPD) (2–5). PPV contains pure PS, while PCV has PS con-
jugated to a protein carrier (CRM197), which enhances immuno-
genicity (2). However, a major public health problem is that both
vaccines have poor efficacy in the adult populations at high risk for
developing IPD, including HIV� patients on antiretroviral ther-
apy (ART) (6–15). Our research group is currently investigating
the possible causes for poor vaccine efficacy in HIV� individuals
on ART.

HIV� subjects have a 35-fold increased burden of IPD com-
pared with age-matched uninfected controls despite ART (15, 16).
Pneumonia remains a leading cause of hospitalization among
HIV� subjects, and S. pneumoniae is the most common identified
bacterial pathogen (16). HIV� patients on optimal ART have re-
duced antibody responses to both pneumococcal vaccines (17,
18). The reasons for this defect in immune function of HIV�

patients who have virologic control are not completely under-
stood. There has been a major emphasis on studying the role of
persistent immune activation due to chronic subclinical viral rep-
lication (19), but an unexplored hypothesis is that the defect in B
cells found in HIV� patients represents a side effect of the long-
term use of certain antiretrovirals, particularly protease inhibitors
(PIs).

Recent data indicate that PIs can cause immunological side
effects (20–23). PIs constrain HIV replication by binding the HIV
aspartyl-proteases and blocking proteolytic cleavage of HIV pro-
tein precursors, including Gag and Pol polyproteins, but they can
also affect human cellular proteases at pharmacological concen-
trations (20). PIs reduce dendritic cell (DC) production of cyto-
kines important in adaptive immunity (interleukin-12 [IL-12]
and IL-15) and impair DC surface expression of key molecules for
antigen presentation (CD86, CD36, CD1d, and CD209) in vitro
(21). In mice infected with lymphocytic choriomeningitis virus
(LCMV), PIs inhibit tumor necrosis factor alpha (TNF-�) pro-
duction and proteasome activity and interfere with major histo-
compatibility complex (MHC) class I presentation, thereby re-

ducing cytotoxic T lymphocyte responses (22). PIs may impair
host defense as they increase LCMV viral load after LCMV infec-
tion in vivo and promote hepatitis B virus replication (22, 24).
Finally, PIs also inhibit proliferation and induce apoptosis in hu-
man B cell lines (23).

There are numerous trials of pneumococcal vaccine efficacy
and immunogenicity in HIV-infected individuals (5, 13, 15, 17,
25). However, no trial has addressed the question of whether dif-
ferent types of antiretroviral therapy (e.g., PIs versus non-PIs)
affect pneumococcal vaccine efficacy. In addition, the effects of PIs
on B cell responses against pneumococcal vaccines are not clear.
We hypothesized that PIs impair antibody responses to pneumo-
coccal vaccines. We focused on antibody responses to PPV since
human samples from a clinical trial were available and this vaccine
is still recommended and widely used in HIV� patients (15, 17).
We determined the effects of the PI ritonavir on quantitative and
qualitative B cell responses to PPV by measuring PPV-specific B
cell frequencies, serum antibody levels, and opsonophagocytic
killing activity (OPA), an in vitro assay that measures the ability of
vaccine-induced antibodies to facilitate opsonization and killing
of S. pneumoniae by human phagocytes (26, 27).

PIs do not impair antibody responses to PPV in mice. As mice
are excellent models of the human immune response to pneumo-
coccal vaccines (1), we used this model to assess whether PIs affect
antibody responses to pneumococcal vaccination in vivo. We fo-
cused on ritonavir as it is the most commonly used PI (28). We
administered ritonavir (20 to 30 mg/kg body weight) (Selleck-
chem) or vehicle (30% polyethylene glycol 400 [PEG 400], 5%
Tween 80, and 5% propylene glycol) by intraperitoneal injections
to 6- to 8-week-old C57BL/6 mice daily for 15 days. On the second
day of ritonavir or vehicle treatment, mice were intraperitoneally
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injected with 100 �l of PPV (Pfizer) diluted 1:10 in phosphate-
buffered saline (PBS). This method, including similar ritonavir
doses and exposure time, has been used previously to show that
ritonavir and other protease inhibitors markedly inhibit the pro-
liferation of B cell lines in vitro (23) and impair cytotoxic T lym-
phocyte activity and T cell expansion against lymphocytic chori-
omeningitis virus (LCMV) infection in mice (22, 23, 29, 30). Most
memory B cells that respond against S. pneumoniae are generated
in the spleen (31). To determine if the numbers of PS-specific B
cells were reduced after PI exposure, spleens were processed using
a 40-�m-pore-size cell strainer (Falcon) and splenocytes were col-
lected in RPMI medium (Lonza) to perform enzyme-linked im-
munospot (ELISpot) analysis 15 days after PPV immunization
(32), the critical period for B cell expansion and antibody produc-
tion (33). B cells were incubated in 96-well plates coated with PPV
overnight at 37°C with 5% CO2. After incubation, B cells were
washed away, and plates were incubated with either biotin–anti-
IgG (Biolegend) or biotin–anti-IgM (Biolegend) and developed
using streptavidin (BD Biosciences) and 5-bromo-4-chloro-3-in-
dolyl phosphate disodium salt (BCIPD) (Sigma). The frequencies

of B cells that produced PPV-specific IgG and IgM antibodies were
quantitated manually. Spleens from untreated and unvaccinated
mice were used as the control (n � 7). There was a significant
increase in the numbers of PPV-specific B cells producing IgG and
IgM antibodies in mice vaccinated with PPV (n � 13) versus un-
vaccinated/untreated mice (Fig. 1A and B). However, no signifi-
cant differences were found in the numbers of B cells producing
PPV-specific antibodies in the groups treated with ritonavir ver-
sus those treated with vehicle (13 mice per group) (Fig. 1A and B).
These results indicate that ritonavir does not impair PPV-specific
B cell frequencies postvaccination. We performed the enzyme-
linked immunosorbent assay (ELISA) (Alpha Diagnostics Inter-
national) to assess the serum concentrations of PPV-specific IgG
and IgM antibodies in mice treated with ritonavir or vehicle before
and after PPV immunization (10 mice per group). There was a
significant increase in PPV-specific IgG and IgM serum levels 15
days following PPV vaccination, but no differences were found
between mice treated with ritonavir and those treated with vehicle
(Fig. 1C and D). Finally, we evaluated whether ritonavir affected
OPA against S. pneumoniae. We collected mouse sera before and

FIG 1 PIs do not impair IgG/IgM antibody production against PPV in mice. Splenocytes from mice treated with PI (ritonavir) or vehicle were collected and
processed to measure PPV-specific B cells producing IgG (A) or IgM (B) using ELISpot. Data points represent the numbers of animals (13 mice per group). Seven
untreated mice were used as control for ELISpot. In addition, ELISA was performed to measure serum levels of PPV-specific IgG (C) or IgM (D) at baseline and
at day 15 post-PPV vaccination (10 mice per group). The Kruskal-Wallis test (ELISpot), Wilcoxon signed-rank test (ELISA, before PPV versus after PPV) and
Mann-Whitney test (ELISA, vehicle after PPV versus ritonavir after PPV) were performed. Medians are shown. P � 0.05 was considered significant. Three
independent experiments are shown.
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after PPV vaccination and compared OPAs against several vac-
cine serotypes of S. pneumoniae (4, 6B, 14, and 23F) between
mice treated with ritonavir and those treated with vehicle. We
did not find differences in OPAs between mice treated with
ritonavir and those treated with vehicle (Fig. 2A to D). Al-
though this could have been due to the small number of ani-

mals tested (5 mice per group), the lack of any trend toward a
difference and our human data related to OPA suggest that
testing additional animals would not find differences. Taken
together, our results indicate that the PI ritonavir does not
affect quantitative and qualitative antibody responses to PPV
in mice. All experiments involving mice were performed in

FIG 2 PIs do not affect opsonophagocytic killing activity (OPA) against S. pneumoniae in mice. OPA assays against vaccine serotypes of S. pneumoniae (4, 6B,
14, and 23F) were performed on mouse sera obtained at baseline and at day 15 post-PPV vaccination (5 mice per group). Medians are shown. OPA change was
calculated as the OPA measured with serum obtained at day 15 divided by that with serum obtained at baseline. The Mann-Whitney test was performed. P � 0.05
was considered significant.

FIG 3 PIs do not affect opsonophagocytic killing activity (OPA) against S. pneumoniae in humans. OPA assays against S. pneumoniae of serotypes 6B and 23F
were performed on human serum samples obtained before and after PPV vaccination. OPA change was calculated using serum obtained 1 month after PPV
divided by serum obtained before PPV vaccination. Eleven subjects were on PI, and 21 subjects were on non-PI antiretrovirals (No PI). Medians are shown. P
values were calculated and adjusted for age, CD4� T cell counts, and viral loads at the time of vaccination, using linear regression analysis. P � 0.05 was
considered significant.
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compliance with protocols approved by the Institutional Ani-
mal Care and Use Committee of Baylor College of Medicine.

PIs do not decrease OPA and antibody production to PPV in
humans. As PIs may impair human proteases (22) and other en-
zymatic targets (23) but not murine enzymes, we assessed the
effects of PIs in humans using pre- and postvaccine samples from
a clinical trial in which we evaluated the immunogenicity of PPV
in 36 HIV� subjects on ART and 36 HIV� subjects who were not
on ART (17). All subjects had CD4� counts of �200 cells/�l. For
this study, we specifically focused on the 36 HIV� subjects who
were on ART. Of the 36 HIV� subjects on ART, 11 were on PI and
21 were on non-PI-based regimens. Three subjects were not in-
cluded in this study because they were noncompliant with their
ART. One month after PPV vaccination, the subjects treated with
PIs (n � 11) did not have reduced OPAs against vaccine serotypes
6B and 23F compared with those treated with regimens not con-
taining PIs (n � 21) (Fig. 3). The results were adjusted for age,

CD4� T cell counts, and viral load. There was no difference be-
tween PI-treated (n � 11) and non-PI-treated (n � 21) subjects in
postvaccine serum IgG or IgM titers against PS contained in PPV
using ELISA (Fig. 4). Five out of 11 (45.5%) subjects from the PI
group and 7 out of 21 (33.3%) from the non-PI group responded
to at least one PS vaccine (P � 0.7, Fisher’s test). We used the
standard definition of responders: �2-fold increase in PS-specific
IgG 1 month postvaccination with an absolute concentration of at
least 1 �g/ml. Of note, the prevaccine serum concentrations of
PS-specific IgG were similar between the groups. The prevaccine
median serum concentrations of 6B-specific IgG were 1.18 �g/ml
(interquartile range [IQR], 0.97 to 1.48) and 1.06 �g/ml (IQR,
0.92 to 1.23) in the PI group and non-PI group, respectively (P �
0.16, Mann-Whitney test). The prevaccine median serum concen-
trations of 23F-specific IgG were 1.07 �g/ml (IQR, 0.81 to 1.44)
and 1.06 �g/ml (IQR, 0.91 to 2.03) in the PI group and non-PI
group, respectively (P � 0.95, Mann-Whitney test). Overall, PIs

FIG 4 PIs do not impair IgG antibody production against PS in humans. ELISA was performed using human sera to detect the presence of IgG antibodies against
the PS serotypes 1, 3, 4, 6B, and 23F, which are included in pneumococcal vaccines. IgG change was calculated as the serum levels of IgG obtained 1 month after
PPV vaccination divided by IgG levels obtained before vaccination. Eleven subjects were on PI, and 21 subjects were on non-PI antiretrovirals (No PI). The
Mann-Whitney test was performed. Medians are shown. P � 0.05 was considered significant.

HIV Protease Inhibitors and Pneumococcal Vaccines

June 2016 Volume 23 Number 6 cvi.asm.org 527Clinical and Vaccine Immunology

 on S
eptem

ber 19, 2019 by guest
http://cvi.asm

.org/
D

ow
nloaded from

 

http://cvi.asm.org
http://cvi.asm.org/


do not affect the capacity of postvaccine serum to opsonize S.
pneumoniae or affect antibody production against PPV in hu-
mans.

Most unvaccinated adults have been previously exposed to
pneumococcal antigens by colonization or prior infections during
childhood (1). The vast majority of the HIV� subjects in our study
had detectable serum levels of pneumococcus-specific IgG before
PPV vaccination, indicating that they had been exposed to pneu-
mococcal antigens previously and that the post-PPV responses
that we measured were recall responses. The presence of PS-spe-
cific memory B cells and PS-specific antibodies after PPV vaccina-
tion is associated with protection against IPD (34–36). HIV� pa-
tients on ART remain at high risk for developing IPD (37), and the
efficacy of existing pneumococcal vaccines is suboptimal in this
patient group (37, 38). We found that PIs do not impair PS-spe-
cific antibody production and OPA following PPV immunization
in humans and mice, indicating that PIs do not play a causal role in
the persistent B cell dysfunction observed in HIV� patients on
ART (18) and in the increased incidence of pneumococcal pneu-
monia observed among these patients (16–18). The results pro-
vide reassurance about using PIs in humans and support investi-
gation of other mechanisms, such as the impact of subclinical viral
replication in antiretroviral-treated HIV� patients or the effects of
non-PI antiretrovirals on B cell responses.
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