




0.05). Of 22 children from the study group, in 13 of them (59%)
the relative value of transitional B cells (CD19� CD38hi IgMhi)
increased above the 95th percentile of the age-matched range,
whereas in 6 children this increase in the relative value of this B cell
subset was accompanied by the normal value of its absolute count
(Fig. 4). The level of significance (P � 0.039) was revealed for the
relationship between the relative value of transitional B cells and
subgroup C (IgG and IgA deficiency) of hypogammaglobuline-
mia. In six of the children studied (27%), a decreased relative value
and, in two of the children, a decreased absolute count of mature
naive B cells (CD19� CD27� IgD�) was revealed that did not
correlate with serum immunoglobulin levels (rho, �0.029 and
0.021, respectively; P � 0.05). The relative value of the total pool

of memory B cells (CD19� CD27�) was increased above the 95th
percentile of the age-matched range in six of the children studied
(27%), and their absolute count increased in 3 children. In 4 chil-
dren who were under the age of 2 years, a decrease in the relative
value of nonswitched IgD� memory B cells was observed. The
percentage of plasmablasts (CD19� CD38� IgM�) in peripheral
blood in children usually does not exceed 5 and does not show
substantial variations in different age groups. In the study group,
in as many as 16 children (73%), the relative value and the abso-
lute count of this B cell subset increased above the upper limit of
the age-matched range (Fig. 5). The deviations of total memory B
cell, marginal zone-like B cell subsets, or plasmablasts did not
correlate with serum immunoglobulin levels.

FIG 2 Individual serum immunoglobulin G (a), A (b), and M (c) levels in children studied. Min, minimum; max, maximum.
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DISCUSSION

The antibody response to the antigenic challenge with vaccines
provides an essential insight into the immune status of children
suspected of having primary antibody deficiencies. As prophylac-
tic vaccines provide a source of standardized antigenic exposure,
the measurements of antibody titers can reflect the antigen-spe-
cific immune response to microorganisms and supply a reason-

able correlate for protection against infection (10). Vaccines
against tetanus and diphtheria with toxoids, being protein thy-
mus-dependent antigens, induce the activation of T helper cells
and the synthesis of IgG antibodies by B cells already in young
infants. Primary vaccination carried out within the first 6 months
and a booster vaccination given in the 18th month of life is aimed
at developing a long-term seroprotection against infections. How-

FIG 3 Levels of antigen-specific postvaccination antibodies: anti-HBs (a), anti-tetanus toxoid (b), anti-diphtheria toxoid (c), and anti-PRP Hib (d).
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ever, data regarding the immunogenicity of vaccines with toxoids
are not entirely consistent. A high seroprotection rate exceeding
1.0 IU/ml against diphtheria and tetanus after 3 doses of primary
immunization reaching 98% and 100%, respectively, was re-

ported by Zarei et al. in Iran (11). Likewise, maintenance of the
specific antibody response was shown in 81% and 96% of Austrian
children ages 4 to 8 years who had received 4 doses of anti-diph-
theria and anti-tetanus vaccine (12). However, in a study by Post-

FIG 4 Relative values (a) and absolute counts (b) of transitional B lymphocytes in children with hypogammaglobulinemia.

FIG 5 Relative values (a) and absolute counts (b) of plasmablasts in children with hypogammaglobulinemia.
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fay-Barbe et al. (13), the administration of 1 booster dose of teta-
nus toxoid in 10 to 11-year-old children who had received 3 doses
of primary vaccination during early infancy induced the minimal
antibody level of 0.1 IU/ml in only 55% of the patients studied,
suggesting that the immaturity of the immune response to vacci-
nation was applicable within the first months of life along with a
failure to generate a long-term immune memory. Dorsey and Or-
ange (14) demonstrated anti-tetanus antibodies present in 30% of
children with transient hypogammagammaglobulinemia of in-
fancy (THI) and considered this impaired immune response to
immunization along with increased B cell number as the principal
pathomechanisms of THI. In our study, 50% of patients with hy-
pogammaglobulinemia did not achieve 0.1 IU/ml, that is, the
minimal protective level of anti-tetanus IgG antibodies, and as
many as 73% of patients did not achieve 1.0 IU/ml, the antibody
level associated with long-term seroprotection. Likewise, a defec-
tive response to vaccination with diphtheria toxoid related to a
specific antibody level below 0.1 IU/ml was demonstrated in 27%
of cases and a level below 1.0 IU/ml in 68% of the children studied.
While in THI and in other frequent antibody production defects
in children, such as IgG subclass deficiency, IgA deficiency, and
specific anti-polysaccharide, an antibody deficiency response to
protein and protein-conjugated vaccines is typically preserved,
not least in a subset of pediatric patients with hypogammaglobu-
linemia, in whom the response to vaccines is impaired, and a lack
of evidence for specific diagnosis of PID may indicate a delayed
maturation of the immune response with antibodies that can also
be consistent with THI (10). In the case of a severe deficiency in
congenital antibody production, such as common variable immu-
nodeficiency (CVID), an insufficient response to vaccines is a typ-
ical finding, displaying however wide intersubject variability of
antibody responsiveness. A positive response to polypeptide vac-
cines was assessed in 23% of CVID patients, with 18% of them
demonstrating a similar response to polysaccharide vaccines (15);
therefore, it may be assumed that hyporesponsiveness to vaccines
and the lack of postvaccination specific antibodies is not an indis-
pensable condition for a diagnosis of CVID.

The investigation of anti-HBs antibodies is admittedly not rec-
ommended routinely as a diagnostic test for defects of antigen-
specific immunity (16) because impaired response to vaccination
against hepatitis B may be an isolated abnormality and not accom-
panied by any exponents of the immunodeficiency. However, the
practical aspect of the examination must be stressed, owing to the
defined anti-HBs antibody level of 100.0 mIU/ml that is consid-
ered protective from infection in patients with immunodeficien-
cies. In our study, the anti-HBs antibody level below 10 mIU/ml,
the minimal protective level, was demonstrated in 32% of patients
and that below 100 mIU/ml, associated with long-term seropro-
tection, was revealed in 59% of the children.

Polysaccharides of encapsulated bacteria are thymus-indepen-
dent type 2 antigens and are characterized by a lack of ability to
stimulate T helper cells, weak induction of the immune response
in the neonatal period, impaired stimulation of class switch re-
combination, and antibody production in children younger than
2 years of age. The response to polysaccharide antigens is associ-
ated with marginal zone B cells, and their number is reduced in
neonates and infants. The synthesis of IgG2, along with IgG4, the
most effective antibody isotypes against polysaccharides is at that
time defective (17, 18). Vaccines containing protein-polysaccha-
ride conjugates stimulate B cells and, in contrast to native Hib PRP

polysaccharides, induce the response to thymus-dependent pro-
tein antigens and provide immunogenicity in infants and children
younger than 2 years of age (19). In as many as 12 children (55%),
the level of anti-PRP antibodies was below 1.0 �g/ml.

It is worth noting that 5 of the children studied manifested
defective production of all four types of postvaccination antibod-
ies; the impaired production of three types of antibodies was dem-
onstrated in 11 children and the impaired production of 1 type of
antibody was observable in 4 children; that is, all together, the
deficiency of antigen-specific antibody response to immunization
was revealed in as many as 20 of the children (91%) studied. This
phenomenon supports the hypothesis by Dorsey and Orange (14)
regarding the relationship between hypogammaglobulinemia and
impaired response to vaccines; however, the proportion of chil-
dren with this immune defect noted in our study was even higher
than in the aforementioned report. No correlation between the
doses of vaccines that had been administered in children studied
and the levels of antigen-specific postvaccination antibodies was
observed.

It must be emphasized that active immunization in the neona-
tal and early infantile period, accompanied by the immaturity of
the adaptive immune response leading to long-term immune
memory, may be considered the major cause of the impairment of
the antibody synthesis following vaccination (20, 21). The imma-
turity of and limitations of T cell functions in neonates and young
children can be important contributors. Delayed maturation of
dendritic cells in early life and impaired secretion of interleu-
kin-12 (IL-12), type I IF (interferon), and IL-18 can result in de-
fective T cell ability to produce cytokines, the CD4� T cell re-
sponse biased toward a Th2 phenotype and promotion of
regulatory T cells. Furthermore, the hypothesis of active suppres-
sion by immune regulatory cells was put forward recently (22),
which involves immune suppressive pathways of mesenchymal
stromal cells, myeloid-derived stromal cells, CD5� B cells, and
regulatory T cells. Important factors that may influence vaccine ef-
ficacy in infants and children is the occurrence of genetic variability
within the major histocompatibility complex (MHC) region. A num-
ber of single nucleotide polymorphisms (SNPs) within MHC class I
and II genes are associated with a specific antibody response, immu-
noglobulin, and IgG subclasses production (23, 24). Additionally,
immunogenetic studies have also shown associations between poly-
morphisms in gene-encoding immune response proteins and varia-
tion in response to vaccines. Among others, associations between an
SNP in the forkhead box protein 1 (FOXP1) gene, a transcription
factor regulating B cell development (25) and in various cytokine
genes, such as gamma interferon (IFN-�), IL-4, IL-4R, IL-10, IL-
10RA, IL-12B, and tumor necrosis factor (TNF), and the vaccine ef-
ficacy have also been shown (26, 27). Another proposed inhibitory
mechanism that may contribute to inadequate infant response to
vaccine is related to high titers of maternal antibodies that persist over
a period of 6 to 12 months. The reduced antibody generation by
maternal antibodies to protein tetanus and hepatitis B vaccines as well
as conjugated Hib vaccine have been reported (28, 29), and this phe-
nomenon may be explained by a hypothesis of the downregulation of
B cell responses mediated through a cross-link between a B cell recep-
tor and the inhibitory Fc�-receptor IIB by a vaccine-antibody com-
plex (29).

Interestingly, in our study antibody production defects were
accompanied by an increased proportion of transitional B cells, a
population that does not proliferate but instead differentiates into
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naive mature B cells; therefore, this expansion of recent bone mar-
row emigrants may be a mechanism related to the small number of
mature B cells due to a peripheral maturation defect. These find-
ings are consistent with observations concerning the underlying
immunologic disease-causing mechanisms in common variable
immunodeficiency (CVID), in which patients fail to produce suf-
ficient amounts of antigen-specific antibodies due to defects in B
cell differentiation and maturation. As mutations in genes encod-
ing T and B cell activation molecules and receptors, such as induc-
ible T cell costimulator (ICOS), transmembrane activator and cal-
cium modulator and cyclophilin ligand interactor (TACI), B cell
activating factor-receptor (BAFF-R), B cell receptor complex
(CD19, CD81, CD21), and CD20 have been detected in less than
10% of patients affected by CVID (30), the identification of ge-
netic defects is limited by disease immunologic heterogeneity. A
classification of CVID dependent of immune parameters of the B
cell compartment with analysis of replication history and somatic
hypermutation status has been proposed by Driessen et al. (31).
The pathophysiologic B cell pattern associated with peripheral
maturation or survival defects was associated with a normal tran-
sitional B cell number and a reduction of naive mature and
memory B cells in CVID patients and also in the hypogam-
maglobulinemic children studied. On the other hand, the gener-
ation of high-affinity B cell receptors in memory B cells and pro-
duction of antigen-specific antibodies, depending on the somatic
hypermutation (SHM) process in the variable region of immuno-
globulin genes in children of various ages, differs considerably and
increases rapidly during the first 2 years of life (32). Therefore, in
young children a delayed maturation of SHM levels might conse-
quently suggest an impaired maturation of the immune system.

The concurrent increase in the proportion of plasmablasts,
precursors of plasma cells that are the major source of high-affin-
ity antibodies, may thus lead to the hypothesis of a maturational
block at the terminal stage of B cell development. This phenome-
non, not reported in previous studies, may be explained as the
expression of immunological immaturity leading eventually to an
impaired antigen-specific antibody response. Further studies of
the antigen-specific B cell repertoire are required to define the
correlates of protection and vaccine efficacy in the particular pop-
ulation of immunodeficient children (33, 34).
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