


















Mackenzie-Dyck et al.

472 cvi.asm.org Clinical and Vaccine Immunology

 on S
eptem

ber 21, 2020 by guest
http://cvi.asm

.org/
D

ow
nloaded from

 



hanced the CMI response, protection from challenge was similar
to that provided by immunization with pMASIA-tgD.

Like our results in cattle, in earlier studies in mice, mixtures of
free, unlinked murine chemokines and antigen (36) or a mixture
of plasmids expressing unlinked antigen and murine beta-defen-
sin (27) did not induce an immune response (27, 28, 36). In our
study, segregation of BNBD3 and tgD either physically or tempo-
rally may have occurred in cattle and not in mice; this phenome-
non of separation has been suggested previously to account for
little or no effect when plasmids are mixed (68). Additionally, it
has been noted that responses to mixtures of plasmids can result in
interference, leading to dominant Th2 responses, less appropriate
responses (68), or suppression of responses (69). The outbred
nature of cattle as a species might have also contributed to the lack
of effect of BNBD3 in cattle when delivered as a separate plasmid,
as immune responses to mixtures of plasmids have been found to
be lower in outbred mice than in inbred mice (70).

Inclusion of BNBD3 in the DNA vaccine as a fusion construct
(pMASIA-BNBD3-tgD) did not affect humoral responses to tgD
but increased CMI responses and appeared to strengthen the Th1
bias in mice. Similarly, in cattle this vaccine was unable to improve
serum antibody levels, but it increased proliferation of PBMCs
and the number of IFN-�-secreting cells. Our results are compa-
rable with the findings of an earlier study in mice, where the ability
of an analogous fusion construct comprised of mBD2 (and
mBD3) in combination with idiotypic antigen (Id) expressed by
malignant B cells to induce protective and therapeutic immunity
to lymphoma was tested (27). sFv, a single-chain Ig made up of the
linked Vh and Vl domains of the Fv fragment of the Ig receptor of
the malignant B cell (described in reference 36) failed to elicit an
Id-specific antibody response when the sFv-encoding DNA vac-
cine was delivered alone or with mBD3 on a separate plasmid,
whereas responses were observed after vaccination with fusion
constructs of either mBD2, mBD3, mMIP3	, or mSLC (27). Pro-
tective immunity against an aggressive lymphoma (38C13) was
obtained after DNA vaccination by both mBD-sFv fusion plas-

mids even though the humoral response was considerably lower
with the vaccine encoding mBD2. The authors concluded that
fusion of tumor antigen with a chemokine or defensin that targets
iDCs was important for both tumor prevention and eradication.
While humoral immunity contributed to protection from tumors,
cellular antitumor immunity was necessary for both protection
and therapeutic antitumor immunity (27). In contrast to our re-
sults, this study suggests that the increased CMI responses in-
duced by the defensin-antigen fusion were critical to antitumor
efficacy.

In mice the fusion construct pMASIA-BNBD3-tgD modulated
the cellular immune response by inducing CD8� IFN-�� CD3�

CTLs and a population of cells that were CD8� IFN-�� but that
were not T cells. It is possible that these CD8� IFN-�� CD3� cells
may have been DCs, since splenic CD8	� DCs have been de-
scribed. This type of DC lacks expression of CD3 (67) and is a
potent secretor of IFN-�, where IFN-� is produced in an autocrine
manner in response to IL-12 secreted by the cells exposed to a
bacterial stimulus (71). These DCs are expanded in response to
signals from the innate immune system as a result of bacterial or
viral infection (71–73). They cross-prime (74), prime (73), or
prime and boost CD8� T cell responses and activate memory
CD8� T cells (75), trigger the development of Th1-type cells/re-
sponse (76, 77), and cause apoptotic death of activated CD4� T
cells (78). As defensins are innate immune system molecules,
BNBD3 might have influenced induction of CD8	� DCs in the
same manner, as they are increased by bacterial/viral infection,
though this was not proven by this study. Since CD8	� DCs pref-
erentially prime CTLs, this would explain the increased CTL re-
sponse we observed. Although the existence of these cells as a
result of DNA immunization with beta-defensin–antigen fusion
constructs has not been reported yet, the presence of such cells
would clarify many of the hitherto-unexplained findings by our-
selves and others.

In vaccinated and BoHV-1-challenged cattle, the addition of
BNBD3 as a fusion construct modified the immune response; VN
antibody levels were maintained, and the numbers of tgD-specific
IFN-�-secreting cells, particularly CD8� IFN-�� cells and CD8�

IFN-�� CD25� CTL cells, were increased. Thus, BNBD3 pro-
moted a predominantly Th1 response that included induction of
CD8� CTLs. While it is generally accepted that Th1 immune re-
sponses drive cellular immunity and Th2 immune responses pref-
erentially drive humoral immunity (79, 80), and indeed the Th1-
polarized/biased cellular response that we observed fits neatly into
this model, in this context, it was puzzling that the VN antibody
was maintained. Our data may be explained, however, by the find-
ings of others. Reports have suggested that while Th1-type cyto-

FIG 7 Effect of vaccination on the phenotypes of IFN-�-secreting T cell subpopulations in PBMCs of calves vaccinated with plasmids encoding tgD and/or
BNBD3, and challenged with BoHV-1. PBMCs were isolated from the peripheral blood of two animals from each of the pMASIA-tgD, pMASIA-BNBD3-tgD, and
negative-control groups prior to challenge and on day 16 after challenge (2 animals per group). CD4-depleted (CD4�), CD8-depleted (CD8�), CD4�, and CD8�

subsets were isolated from PBMCs by MACS, and the homogeneity of the resulting CD4�/� and CD8 �/� cell populations was determined by FACS. (a to f) Dot
plots are for one animal (96) from the pMASIA-BNBD3-tgD group on day 16 postchallenge and are representative of all depletions. (a) PBMCs recognized by
CD4 MAb. (b) CD4� population recognized by CD4 MAb. (c) CD4� population recognized by CD4 MAb. (d) PBMCs recognized by CD8 MAb. (e) CD8�

population recognized by CD8 MAb. (f) CD8� population recognized by CD8 MAb. (g and i) Frequencies of IFN-�-secreting cells in the PBMCs and CD4�,
CD4�, and CD4� CD4� cells (5, 10, 15, and 20% of 106/well) of 2 animals from the pMASIA-tgD-vaccinated group (g) and from the pMASIA-BNBD3-tgD
vaccinated group (i). (h and j) Frequencies of IFN-�-secreting cells in the PBMCs and CD8�, CD8�, and CD8� CD8� cells (2.5, 5, 10, and 15% of 106/well) of
2 animals from the pMASIA-tgD-vaccinated group (h) and from the pMASIA-BNBD3-tgD vaccinated group (j). The number of IFN-�-secreting cells per 106

cells was calculated as the difference between the number of spots in the tgD-stimulated wells and the number of spots in the medium control wells. FSC, forward
scatter.

TABLE 2 Flow cytometric analysis of bovine CD8� IFN-�� and CD8�

IFN-�� CD25� CTLs

Animal no. Treatment

% CTLs

CD8�

IFN-��

CD8� IFN-��

CD25�

75 pMASIA-tgD 19.7 12.5
85 pMASIA-tgD 16.3 6.9
86 pMASIA-BNBD3-tgD 36.5 22.1
96 pMASIA-BNBD3-tgD 36.4 22.7
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kines exert an overall negative effect on systemic humoral re-
sponses (79, 81), they can have a positive effect on the magnitude
of neutralizing antibody responses (82), and that neutralizing
antibody responses can occur concurrent with induction of Th1-
polarized responses (83–85). In particular, our results (VN anti-
body concurrent with induction of CTL) with this defensin-anti-
gen fusion construct in cattle bears striking similarity to the results
obtained when in the mouse model, an experimental DNA vac-

cine expressing murine beta-defensin 2 (mBD2) as a fusion with
the gp120 antigen of HIV-1 induced systemic and mucosal CTLs
and neutralizing antibody to the HIV-1 envelope protein in i.d.
immunized mice (28). Although the exact mechanism was not
determined, the authors theorized that the immunomodulatory
effect of the vaccine could have been due to the previously discov-
ered chemotactic nature of mBD2 for iDCs (36). Additionally, the
authors suggested that beta-defensin might have targeted recep-
tors on antigen-presenting cells, induced expression of costimu-
latory molecules, and/or induced production of proinflammatory
cytokines, particularly by iDCs (28).

More recently, a beta-defensin adjuvanting strategy was evalu-
ated in chickens, whereby birds were immunized intramuscularly
(i.m.) with a DNA vaccine encoding a fusion construct of the
mature form of avian beta-defensin 1 (AvBD1) with the VP2 pro-
tein of infectious bursal disease virus (IBDV) (29). Unlike our
results in cattle, in this study the plasmid encoding the fusion
construct induced significantly greater antibody responses than
the plasmid encoding the antigen (VP2) alone. The greater anti-
body response might have been due to the route of administra-
tion, as higher humoral responses have been observed when DNA
vaccines have been delivered i.m. (86), or to differences in species
or the two beta-defensins. Comparable to the augmented cellular
responses, including increased numbers of CD8� cells, that we
observed in cattle, in this avian model increased percentages of
CD3, CD4, and CD8 T cells were observed in birds immunized
with the fusion construct. After challenge with IBDV, the 10
chickens immunized with the AvBD1 fusion construct were pro-
tected, while in the group given the DNA vaccine encoding VP2
alone, eight out of 10 were protected. Despite the modest im-
provements in humoral and cellular immunity and protection
from IBDV, the authors concluded that AvBD1 in a fusion con-
struct enhanced VP2 DNA vaccine immunity and protection from
IBDV. The authors further suggested that the effect of AvBD1 on
improved CMI responses may have been responsible for the pro-
tection induced by the fusion construct, particularly since CMI
and specifically T cell responses had been shown to be important
in protection from IBDV infection.

In cattle, protective vaccination against BoHV-1 has been de-
scribed for commercially available MLV or KV BoHV-1 vaccines.
As such, it has been defined as an observed reduction in clinical
signs such as decreased virus shedding, lowered temperature, and
decreased nasal secretions (87). Following challenge with
BoHV-1, we observed a reduction in the clinical signs of infection
in calves vaccinated with the fusion construct pMASIA-BNBD3-
tgD. Contrary to what was observed in the avian model, the addi-
tion of beta-defensin gave protection equivalent to, but not better
than, what was observed in the group given the DNA vaccine
encoding the antigen alone. This was surprising in light of the
improvements seen in the avian study and because protective vac-
cination against BoHV-1 has also been associated with increased
CMI responses, particularly those in the form of increased IFN-�
production (87). Given that humoral immunity was not enhanced
in calves vaccinated with pMASIA-BNBD3-tgD compared to
those vaccinated with pMASIA-tgD and that inefficient humoral
immune responses have been implicated in a lack of protection
from BoHV-1 challenge (reviewed in reference 88), this does sug-
gest that the humoral immune responses were not high enough
and that the improved cellular immunity induced by BNBD3 was
not sufficient to result in enhanced protection from BoHV-1.

FIG 8 Clinical signs and virus shedding after BoHV-1 challenge. Eight- to
9-month-old BoHV-1-seronegative Angus and Hereford crossbred calves
were immunized three times i.d. by needle-free injection with 0.75 mg plas-
mid, followed by BoHV-1 challenge 1 month after the last immunization (6
animals per group). (a) Mean (geometric) virus shedding in nasal secretions of
calves challenged with BoHV-1. (b) Mean weight change. (c) Mean rectal
temperatures. *, P � 0.05; **, P � 0.01.
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Here we tested our hypothesis that inclusion of an iDC-che-
motactic beta-defensin either encoded on a separate plasmid or as
a fusion construct with antigen in a DNA vaccine would improve
the efficacy of a BoHV-1 DNA vaccine for cattle. In summary,
delivery of BNBD3 by separate plasmid did not enhance immune
responses in cattle, while the addition of BNBD3 as a fusion con-
struct modulated the immune response to the DNA vaccine, re-
sulting in increased cell-mediated immunity. Protection against
BoHV-1 was afforded to an equal extent by DNA vaccines encod-
ing tgD alone or as a fusion with BNBD3. Taken together, from
our results and those of others regarding the effect of beta-de-
fensins on DNA vaccines, some patterns emerge that are worth
noting, as they suggest directions where further study could be
productive. With respect to humoral responses, systemic antigen-
specific IgG responses appear to vary with the antigen, the route of
delivery, and the species, while CMI responses appear to be im-
proved by beta-defensin regardless of the nature of these factors.
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