National Prevalence Estimates for Cytomegalovirus IgM and IgG Avidity and Association between High IgM Antibody Titer and Low IgG Avidity

Sheila C. Dollard, 1* Stephanie A. S. Staras, 2 Minal M. Amin, 1 D. Scott Schmid, 1 and Michael J. Cannon 3

Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia 1; The University of Florida, Department of Health Outcomes and Policy, Gainesville, Florida 2; and Centers for Disease Control and Prevention, National Center on Birth Defects and Developmental Disabilities, Atlanta, Georgia 3

Received 27 May 2011/Returned for modification 28 June 2011/Accepted 6 September 2011

Primary cytomegalovirus (CMV) infection of the mother during pregnancy presents risk of CMV infection of the fetus with resulting permanent disability. CMV IgM antibody is generated following primary CMV infection but also can appear during nonprimary CMV infection and is thus of limited diagnostic use by itself. In contrast, the presence of low CMV IgG avidity has been shown to be a unique and reliable serologic indicator of primary CMV infection. We measured CMV IgG and IgM antibody levels and IgG avidity in sera from a population sample of 6,067 U.S. women aged 12 to 49 years from NHANES (National Health and Nutrition Examination Survey). The CMV IgG prevalence was 58% overall and increased strongly with age. The CMV IgM prevalence was 3.0% overall and remained relatively flat across age groups. The prevalence of low IgG avidity was 2.0% overall, decreased sharply with age, and was seen mainly among IgM-positive sera. Fourteen to 18% of the CMV IgM-positive sera were low IgG avidity, presumably representing primary CMV infection. High CMV IgM antibody titer was a strong predictor of low IgG avidity. The ability to reliably identify primary CMV infection during pregnancy is important for management of the pregnancy, including possible treatment options for the fetus. Both IgM and IgG avidity measurements provide useful clinical information for evaluating primary CMV infection, although commercial tests for CMV IgG avidity are not yet widely available in the United States.

Human cytomegalovirus (CMV) is a ubiquitous virus that rarely causes disease in healthy individuals yet can cause serious disease in the fetus and in immunosuppressed individuals. Fetal infection is the greatest public health burden associated with CMV, occurring in 0.7% of overall live births worldwide with 15 to 20% of infected infants having permanent disability, including hearing loss, visual impairment, and cognitive deficit (8, 12). The most severe outcomes of congenital CMV infection tend to result from primary (i.e., first) CMV infection of the mother during pregnancy that leads to intrauterine transmission to the fetus (9, 24). Thus, accurate diagnosis of primary infection versus nonprimary infection (i.e., reactivation or re-infection with a different strain) during pregnancy provides important information for clinical management (1–3, 7) and would allow for the possibility of prenatal treatment (19).

Unequivocal diagnosis of primary CMV infection is achieved with documented CMV IgG seroconversion. However, since women are not routinely tested for CMV antibody, documentation of seroconversion is rare. When only one serum specimen is available, several parameters of the serologic response to viral infection can be helpful for diagnosis of primary infection, including the class (IgM versus IgG), concentration, and avidity of the antibodies produced. The transient presence of specific IgM antibody has long been used as a diagnostic marker for primary CMV infection, but IgM can also be present during viral reactivation or reinfection (18, 20) and so is not unique to primary infection. In contrast to IgM, low-avidity IgG is present only with primary infection, increasing over 3 to 5 months to high avidity (11, 14), a process that is referred to as maturation of the humoral immune response. IgG avidity has thus gained diagnostic importance in identifying primary CMV infection, mainly in Europe, where several commercial CMV avidity tests are available (2, 10, 15, 16, 20). Several groups have reported substantial improvements in the identification of at-risk pregnancies using diagnostic algorithms that incorporate both IgG avidity and IgM measurements (16, 17).

We measured CMV IgM antibody and IgG avidity in sera from 6,067 nationally representative U.S. women aged 12 to 49 years to determine the prevalence, demographic trends, and risk factors for these serologic measures. To our knowledge, there have been no previous studies of IgM and IgG avidity conducted in a large population-based sample of the United States. A secondary purpose of the study included testing of additional sera not from the NHANES (National Health and Nutrition Examination Survey) collection to examine whether parameters of IgM antibody measurements were associated with low IgG avidity, since CMV IgG avidity testing is not yet widely available in the United States.

* Corresponding author. Mailing address: CDC, 1600 Clifton Rd. NE, Bldg 18, Room 6-133, Atlanta, GA 30333. Phone: (404) 639-2178. Fax: (404) 639-4056. E-mail: SDollard@cdc.gov.

† Published ahead of print on 14 September 2011.
TABLE 1. CMV IgG and IgM prevalence estimates (weighted) by age among 5,992 women from the NHANES national survey.

<table>
<thead>
<tr>
<th>Age of women (yr)</th>
<th>No. tested</th>
<th>CMV IgG % positive</th>
<th>CMV IgM % positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–19</td>
<td>1,525</td>
<td>47.3</td>
<td>2.6</td>
</tr>
<tr>
<td>20–29</td>
<td>1,643</td>
<td>54.4</td>
<td>4.5</td>
</tr>
<tr>
<td>30–39</td>
<td>1,616</td>
<td>59.7</td>
<td>2.3</td>
</tr>
<tr>
<td>40–49</td>
<td>1,208</td>
<td>69.8</td>
<td>2.4</td>
</tr>
<tr>
<td>Total</td>
<td>5,992</td>
<td>57.9</td>
<td>3.0</td>
</tr>
</tbody>
</table>

* Three of the IgM+ sera were IgG+; the rest were IgG-.

RESULTS

CMV IgG and IgM prevalence. The overall CMV IgG seroprevalence in the study participants 12 to 49 years old was 58% and rose steadily by decade (Table 1). The CMV IgM seroprevalence was 3.0% and did not vary significantly by age (Table 1). All but 3 of the CMV IgM-positive samples were also CMV IgG positive. There was no evidence of an association between CMV IgM seropositivity and the age, race, or household income of study participants. Serial dilution of CMV IgM-positive sera confirmed that UA/ml values approximated antibody titer for the range shown. IgM UA/ml values decreased steadily with dilution, and sera with higher UA/ml values had higher endpoint antibody titers (Fig. 1).

Prevalence estimates for low-avidity IgG and trends with age. All IgG avidity testing was conducted only with IgG-positive sera. In several previous studies, 90% or more of CMV low-IgG avidity sera identified were CMV IgM positive (4, 14, 22); therefore, our avidity testing and analysis focused on the IgM-positive sera. Table 2 shows weighted prevalence estimates for low avidity by age among all available IgM-positive sera from the NHANES collection (n = 126) using three different avidity test cutoffs. The 0.80 test cutoff identified 31.1% of the IgM-positive sera as low avidity, showing a significant association between low avidity and young age (P = 0.004).

TABLE 2. Prevalence estimates (weighted) for CMV IgM low avidity by age among the 126 IgM+ sera from the NHANES national survey.

<table>
<thead>
<tr>
<th>Age of women (yr)</th>
<th>No. tested</th>
<th>Median % positive (95% CI) by test cutoff for low aviditya</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>36</td>
<td>67.4 (35.3–88.6)</td>
</tr>
<tr>
<td>0.7</td>
<td>52</td>
<td>30.7 (16.8–49.1)</td>
</tr>
<tr>
<td>0.6</td>
<td>38</td>
<td>17.1 (7.1–35.7)</td>
</tr>
<tr>
<td>12–19</td>
<td>36</td>
<td>33.0 (11.6–64.9)</td>
</tr>
<tr>
<td>20–29</td>
<td>52</td>
<td>16.5 (7.1–33.8)</td>
</tr>
<tr>
<td>30–49</td>
<td>38</td>
<td>3.1 (0.0–14.0)</td>
</tr>
<tr>
<td>All ages</td>
<td>126</td>
<td>7.6 (3.5–15.9)</td>
</tr>
</tbody>
</table>

a P values for trends with age were 0.004, 0.048, and 0.3 for cutoff values of 0.8, 0.7, and 0.6, respectively. 95% CI, 95% confidence intervals.
The 0.70 test cutoff identified 13.5% of the IgM-positive sera as low avidity with a significant association with young age ($P = 0.048$). The 0.60 test cutoff identified 7.6% of the IgM-positive sera as low avidity and a similar association with young age though nonsignificant.

Table 3 shows unweighted prevalence estimates for low avidity including IgM-negative sera using three different avidity test cutoffs. To estimate low avidity for all of the NHANES sera, we made the assumption that the 129 tested and 3,384 untested IgM-negative sera had the same proportions of low-avidity sera. We did not use the survey weights in any of the groups (IgM positive, IgM negative tested, or IgM negative untested) because of the strong assumptions used in this estimate. Thus, our estimates of low IgG avidity in Table 3 differ from the weighted estimates in Table 2, and Table 3 estimates are not considered United States population estimates. The small number of low-avidity sera among IgM-negative sera did not allow stratification by age. Analysis of low-IgG-avidity prevalence among all sera by race or household income was not possible because of low prevalence.

We also investigated whether high CMV IgG titer sera can give false low-avidity status as reported by Dangel et al. (6), using the index value of 0.7 as the cutoff for low avidity. Dilution of high-titer sera (100 to 285 UA/ml) to below 50 UA/ml was performed on 7 high-avidity and 7 low-avidity sera. For the high-avidity sera, dilution changed the avidity status to borderline low avidity (index, 0.65 to 0.69) for 2/7 sera and did not change the avidity status for 5/7 sera. Dilution did not change the avidity status for any of the low-avidity sera. Similar results were seen with 0.6 and 0.8 avidity test cutoffs (data not shown).

Relationship between IgM antibody levels and IgG avidity. CMV IgM-negative or equivocal sera ($n = 154$) and IgM-positive sera ($n = 170$) of various antibody levels were examined for IgG avidity. Table 4 shows 1.9% prevalence for low IgG avidity among IgM-negative and equivocal sera and the steadily increasing proportion of sera that are low avidity as the IgM UA/ml increases, up to 78.8% for sera with IgM UA/ml of 2.0 to 4.0 (Table 4) (chi-square test for trend of decreasing IgG avidity with increasing IgM levels, $P < 0.0001$). Figure 2 shows actual IgM UA/ml and avidity values for the 324 sera presented in Table 4. Sera with the highest IgM levels had the lowest IgG avidity index values. The 0.7 avidity test cutoff was used to define low IgG avidity for this analysis, although similar strong trends were also seen with the 0.8 and 0.6 test cutoffs (data not shown).

Table 3. Low-CMV-IgG-avidity prevalence estimates (unweighted) for both CMV IgM-positive and IgM-negative sera from the NHANES survey, according to avidity test cutoff

<table>
<thead>
<tr>
<th>CMV IgM status (no. tested)</th>
<th>% prevalence of low IgG avidity (no. of specimens) by avidity test cutoff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.80</td>
</tr>
<tr>
<td>IgM⁺ (126)</td>
<td>34.9 (44)</td>
</tr>
<tr>
<td>IgM⁻ (129)</td>
<td>8.5 (11)</td>
</tr>
<tr>
<td>IgM⁺ and IgM⁻ combined (255)</td>
<td>6.6 (55)</td>
</tr>
</tbody>
</table>

The assay cutoff for IgM antibody, showing the proportion that were low IgG avidity. Chi-square test for trend, $P < 0.0001$. The 0.7 avidity test cutoff was used to define low IgG avidity.

Table 4. Association between CMV IgM antibody level and low IgG avidity

<table>
<thead>
<tr>
<th>IgM UA/ml</th>
<th>No. of sera (total = 324)</th>
<th>% low avidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgM negative or equivalent, <0.90</td>
<td>154</td>
<td>1.9</td>
</tr>
<tr>
<td>0.90–1.09</td>
<td>50</td>
<td>6.0</td>
</tr>
<tr>
<td>1.10–1.29</td>
<td>26</td>
<td>15.4</td>
</tr>
<tr>
<td>1.30–1.49</td>
<td>29</td>
<td>17.2</td>
</tr>
<tr>
<td>1.50–1.99</td>
<td>32</td>
<td>40.6</td>
</tr>
<tr>
<td>≥2.00–4.00</td>
<td>33</td>
<td>78.8</td>
</tr>
</tbody>
</table>

a Sera are listed by increasing levels of IgM antibody, showing the proportion that were low IgG avidity. Chi-square test for trend, $P < 0.0001$. The 0.7 avidity test cutoff was used to define low IgG avidity.

DISCUSSION

Our results present the first prevalence estimates for CMV IgM and low IgG avidity in a nationally representative U.S. population. CMV IgM seroprevalence among women ranged from 2.3 to 4.5% across age groups and did not show significant trends with age. These results are consistent with the understanding that CMV IgM can be produced throughout life after primary CMV infection or as a result of reactivation (18, 20) and suggest that older people may be as likely to have a recurrent episode as younger people are to have a primary infection. No risk factors based on race, ethnicity, age, or household income emerged for CMV IgM seroprevalence in contrast to risk factors such as race/ethnicity and household income for CMV IgG seroprevalence reported by Staras et al. (25). The lack of identifiable risk factors for CMV IgM may be due to the relatively low number of observations (3.0% prevalence for IgM), and because over 80% of the IgM reactivity in our population sample was high avidity and thus presumably from nonprimary CMV infection, which may be less associated with identifiable risk than primary infection. In addition, a portion of the IgM-positive sera may have been false-positive determinations known to occur with CMV IgM testing (13).

Testing all available IgM-positive sera and a sample of IgM-negative sera from the NHANES repository for IgG avidity allowed us to provide prevalence estimates for low IgG avidity.
standardization among commercial avidity tests recently high-

NHANES. Commercial CMV IgG avidity testing has the gen-
during analysis after the serum collection had been returned to
analysis would have benefited from testing more of the IgM-
factors for low avidity and primary CMV infection. The avidity
sample size of 6,000 lacked sufficient power to analyze risk
design of NHANES, which did not allow documentation of
and first population-based estimates for CMV IgM and IgG
low IgG avidity.

ing IgM antibody level, and the high-antibody group was 79%
extended work by Prince and Leber (22), who measured IgG
avidity in 64 CMV IgM-positive sera showed that high
IgM antibody titers (>2.0 UA/ml) were strongly associated
with low avidity and presumably primary CMV infection. This
extended work by Prince and Leber (22), who measured IgG
avidity in 64 CMV IgM-positive sera that were primarily low
titer or high titer and showed that the high-titer group was 93%
low IgG avidity. Our study analyzed about 3 times more IgM-
positive sera with titers spanning the test range and showed a
steadily increasing proportion of low IgG avidity with increas-
ing IgM antibody level, and the high-antibody group was 79%
low IgG avidity.

Strengths of the study include the large national sample size
and first population-based estimates for CMV IgM and IgG
avidity. Limitations of the study include the cross-sectional
design of NHANES, which did not allow documentation of
IgG seroconversion to support low-avidity determination. The
sample size of 6,000 lacked sufficient power to analyze risk
factors for low avidity and primary CMV infection. The avidity
analysis would have benefited from testing more of the IgM-
negative sera (12% of 3,384 were tested), but this became evident
during analysis after the serum collection had been returned to
NHANES. Commercial CMV IgG avidity testing has the gen-
eral limitation of being relatively new and requiring further
standardization among commercial avidity tests recently high-
lighted by Revello et al. (23). Borderline avidity values should
be interpreted with caution and considered together with CMV IgM determination.

In summary, our findings support the understanding that
CMV IgM reactivity can occur throughout life as the result of
primary and nonprimary CMV infection. Our prevalence esti-
mates for low IgG avidity suggest that at a given point in time,
14 to 18% of CMV IgM reactivity represents primary CMV
infection, consistent with results from a large study in France
where 10 to 16% of the IgM-positive sera identified from
pregnant women were low avidity (21). Because about 90% of
the low-avidity sera were IgM positive, screening for IgM can
greatly enrich the testing pool for low-IgG-avidity sera and
should remain part of a testing algorithm. High IgM antibody
titer was a strong predictor for low IgG avidity, which may aid
the identification of primary infection and risk for congenital
CMV infection, especially with the current limited availability
of avidity testing. To the best of our knowledge, CMV IgG
avidity testing in the United States is available at only two
reference laboratories (Focus Diagnostics, Cypress, CA, and
ARUP Laboratory, Salt Lake City, UT), and kits are sold
through Abbott Laboratories (Abbott Park, IL) but only for use
on the Abbott instrument.

ACKNOWLEDGMENTS

This work was supported by the Centers for Disease Control and
Prevention.

We thank the following individuals for their excellent assistance: Kay Radford and
William Hendley (laboratory testing), Elizabeth
Henderson (graphics), and Toni Roberson (manuscript preparation).
The findings and conclusions in this report are those of the authors
and do not necessarily represent the views of the Centers for Disease
Control and Prevention.

REFERENCES

Grangeot-Keros. 2001. Multicenter evaluation of a rapid and convenient
method for determination of cytomegalovirus immunoglobulin G avidity.
1991. Differentiation of primary cytomegalovirus infection from reactivation
33:6–9.
distinguishes primary from non-primary cytomegalovirus infection in preg-
Prevalence of cytomegalovirus infection among the general population and
pregnant women in the United States. BMC Infect. Dis. 7:71.
avidity testing by adjusting the concentration of CMV-specific IgG in test
of an in-house specific immunoglobulin G (IgG) avidity ELISA for distinguishing
recent primary from long-term human cytomegalovirus (HCMV) infec-
prevalence of neurological and sensory sequelae and mortality associated
ity index for the diagnosis of primary CMV infection in pregnant women. J.
by a low avidity of specific IgG. J. Clin. Immunol. 8:214–221.
epidemiology of congenital cytomegalovirus (CMV) infection. Rev. Med.

