Sensitivity and Specificity of a Monoclonal Antibody-Based Fluorescence Assay for Detecting *Enterocytozoon bieneusi* Spores in Feces of Simian Immunodeficiency Virus-Infected Macaques

Inderpal Singh,1 Abhineet S. Sheoran,1 Quanshun Zhang,1 Angela Carville,2 and Saul Tzipori1*

Division of Infectious Diseases, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts,1 and Harvard Medical School New England Regional Primate Research Center, Southborough, Massachusetts2

Received 6 June 2005/Returned for modification 18 July 2005/Accepted 26 July 2005

Enterocytozoon bieneusi is clinically the most significant among the microsporidia causing chronic diarrhea, wasting, and cholangitis in individuals with human immunodeficiency virus/AIDS. Microscopy with either calcofluor or modified trichrome stains is the standard diagnostic test for microsporidiosis and does not allow species identification. Detection of *E. bieneusi* infection based on PCR is limited to a few reference laboratories, and thus it is not the standard diagnostic assay. We have recently reported the development and characterization of a panel of monoclonal antibodies against *E. bieneusi*, and in this publication we evaluated the specificity and sensitivity of an immunofluorescence assay (IFA), compared with PCR, in simian immunodeficiency virus-infected macaques. The IFA, which correlated with the primary PCR method, with a detection limit of 1.5 × 10^5 spores per gram of feces, will simplify considerably the detection of *E. bieneusi* spores in clinical and environmental specimens and in laboratory and epidemiological investigations.

Enterocytozoon bieneusi, an emerging enteric spore-forming protozoan, is clinically the most significant among the microsporidia which are linked to chronic diarrhea, wasting, and cholangitis in up to 30 to 50% of individuals with human immunodeficiency virus (HIV)/AIDS (2, 3, 25) as well as in recipients of organ transplants (17, 18) and malnourished children (23). *E. bieneusi* is occasionally symptomatic in healthy immunocompetent individuals (11, 12, 26) and also may contribute to traveler’s diarrhea (10). *E. bieneusi* also infects other mammals, including simian immunodeficiency virus (SIV)-infected macaques, in which lesions, as in humans, are localized in the small intestine, gallbladder, and bile ducts (14).

E. bieneusi infections are difficult to diagnose, primarily because the organisms are indistinguishable in size from bacteria and yeasts in stool. Until recently the diagnosis of intestinal microsporidiosis was based on the microscopic examination of feces stained with fluorescent Uvitex 2B or by the modified trichrome or calcofluor white stain (6, 7, 13, 24). These methods are nonspecific, as they stain chitin in the endospore layer of the DNA preparation described above with primers (Table 1). An additional 232 fecal samples randomly collected from several ongoing studies of SIV-infected macaques were also comparatively tested for the presence of *E. bieneusi* spores by IFA and PCR (Table 2). Fecal samples from SIV-naive animals were included as controls. All animals were housed at the New England Regional Primate Research Center and were maintained in accordance with the Guide for the Care and Use of Laboratory Animals prepared by the National Research Council.

PCR. (i) DNA extraction. A modified procedure of DNA fecal extraction was used (5). Briefly, 200 μl of 0.5-mm glass beads (BioSpec Products, Bartlesville, OK), 400 μl of digestion buffer (100 mM sodium chloride, 25 mM EDTA, 10 mM Tris [pH 8.0], 2% sodium dodecyl sulfate), 600 μl of Tris-buffered phenol-chloroform (BioExpress, Kayville, UT), and 200 mg of feces were added to a 2-ml screw-cap tube. The sample was homogenized by the Mini Bead-Beater (BioSpec Products, Bartlesville, OK) at 5,000 rpm (5,500 × g) for 2 min. After centrifugation at the top speed for 5 min, 400 μl of aqueous phase was adjusted to 0.7 M sodium chloride. The DNA was extracted using the Geneclean III kit (Bio101, Carlsbad, CA) according to the manufacturer’s instructions and stored at −20°C.

(ii) Primary and nested PCR. The first round of PCR (primary PCR) was performed with 1 μl of the DNA preparation described above with primers specific for the *E. bieneusi* ribosomal internal transcribed spacer DNA as described elsewhere (4). The sequences of primers were as indicated: outer primers, forward (EBITS3) (5′-GGTACATTGAATGAGAGC-3′) and reverse (IBITS4) (5′-TTCAGATTCATTCCGCATC-3′), and inner (nested) primers, forward (IBITS1) (5′-GCTCTGAATATCTATGGCTAG-3′) and reverse (EBITS2.4) (IFA) using MAbs against *E. bieneusi* for the detection of spores in fecal samples of SIV-infected macaques, compared with PCR.

MATERIALS AND METHODS

Fecal samples. Monthly fecal samples were obtained from a cohort of 12 SIV-infected rhesus macaques (Macaca mulatta), either experimentally or naturally infected with *E. bieneusi*, for 4 to 8 months to determine the pattern of excretion of *E. bieneusi* spores. The sensitivity and specificity of the IFA were compared with those of PCR, the method that we currently use for detection (Table 1). An additional 232 fecal samples randomly collected from several ongoing studies of SIV-infected macaques were also comparatively tested for the presence of *E. bieneusi* spores by IFA and PCR (Table 2). Fecal samples from SIV-naive animals were included as controls. All animals were housed at the New England Regional Primate Research Center and were maintained in accordance with the Guide for the Care and Use of Laboratory Animals prepared by the National Research Council.
E. bieneusi spores were evaluated for the detection of nested PCR, or negative for both primary and nested PCR. PCR products were visualized by the use of ethidium bromide staining after the size of the product generated with nested primers was 390 bp (19). The cycling parameters of nested PCR consisted of 94°C for 3 min; 35 cycles of 94°C for 40 s, 57°C for 40 s, and 72°C for 1 min; and 72°C for 5 min in a thermocycler (MJ Research, Watertown, MA).

The cycling parameters of primary PCR were as described elsewhere (21, 28). To determine the dilution of the MAbs used, the specificity of IFA was 100% compared to primary PCR (Table 2). Of the 62 fecal samples which failed to generate a primary PCR signal but which did so by nested PCR, only 42 of the 62 samples were positive by IFA, indicating that, while IFA was more sensitive than the primary PCR, as it detected 42 positive samples which were negative with primary PCR, it was less sensitive (87%) than the nested PCR (Table 2). Samples negative by both primary and nested PCR were also negative by IFA.

Relative sensitivity of IFA and PCR. Feces containing E. bieneusi spores were twofold diluted to 1:2,048 (Table 3). The sensitivities of the IFA, using three different MAbs, were compared at each dilution with each other and with primary and nested PCRs. Table 3 demonstrated that, although IgM MAb appeared to detect approximately two- to threefold-more E. bieneusi spores than IgG MAbs till 1/32 dilution of feces, all three MAbs were equally effective, detecting similar numbers of spores from 1/64 till 1/256 dilution, and corresponded well with the primary PCR results, with a detection limit of ∼150,000 spores per gram of feces. The nested PCR was again more sensitive, with a detection limit of approximately 70,000 spores per gram of feces.

DISCUSSION

We have evaluated a panel of three MAbs against E. bieneusi as reagents for IFA, and all appeared to be equal to the task, as shown in Table 3. We have selected 2G4, an IgM MAb which gave the brightest fluorescence, for the studies described in Tables 1 and 2, and we believe this MAb to be best suited for clinical diagnosis and for other laboratory and epidemiological investigations of E. bieneusi infections in humans and in other mammals. With other mammalian microsporidia, specific polyclonal and monoclonal antibodies show strong cross-reactivity by IFA (1, 15, 27, 29). None, however, cross-reacted with E. bieneusi spores, while the MAbs generated against E. bieneusi appear to reciprocate by being genus specific too, as they failed to react with other microsporidia that infect humans (21, 28).

Both assays reflected the chronicity of E. bieneusi infections...
TABLE 3. Comparative sensitivities of IFA (using three different MAb) and PCR in serially diluted feces containing *E. bieneusi* spores

<table>
<thead>
<tr>
<th>Serial dilution</th>
<th>Result</th>
<th>IFA (1B; IgG2a)</th>
<th>IFA (2G8; IgG2b)</th>
<th>IFA (2G4; IgM)</th>
<th>Estimated no. of spores/g of feces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary PCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undiluted</td>
<td>+</td>
<td>597</td>
<td>480</td>
<td>1,537</td>
<td>3.8 × 10^7</td>
</tr>
<tr>
<td>1:2</td>
<td>+</td>
<td>453</td>
<td>415</td>
<td>1,280</td>
<td>1.9 × 10^7</td>
</tr>
<tr>
<td>1:4</td>
<td>+</td>
<td>281</td>
<td>224</td>
<td>845</td>
<td>9.5 × 10^6</td>
</tr>
<tr>
<td>1:8</td>
<td>+</td>
<td>181</td>
<td>124</td>
<td>442</td>
<td>4.8 × 10^6</td>
</tr>
<tr>
<td>1:16</td>
<td>+</td>
<td>138</td>
<td>107</td>
<td>328</td>
<td>2.4 × 10^6</td>
</tr>
<tr>
<td>1:32</td>
<td>+</td>
<td>87</td>
<td>58</td>
<td>118</td>
<td>1.2 × 10^6</td>
</tr>
<tr>
<td>1:64</td>
<td>+</td>
<td>50</td>
<td>29</td>
<td>38</td>
<td>6.0 × 10^5</td>
</tr>
<tr>
<td>1:128</td>
<td>+</td>
<td>26</td>
<td>19</td>
<td>26</td>
<td>3.0 × 10^5</td>
</tr>
<tr>
<td>1:256</td>
<td>+</td>
<td>15</td>
<td>9</td>
<td>20</td>
<td>1.5 × 10^5</td>
</tr>
<tr>
<td>1:512</td>
<td>−</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7.5 × 10^4</td>
</tr>
<tr>
<td>1:1,024</td>
<td>−</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.8 × 10^4</td>
</tr>
<tr>
<td>1:2,048</td>
<td>−</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.9 × 10^4</td>
</tr>
<tr>
<td>Control</td>
<td>−</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* At a magnification of ×400.

in SIV-infected macaques on the one hand and the consistency and equal sensitivity of the IFA and the primary PCR. When nested PCR was performed, the sensitivity was higher. Both assays have shown that the detection limit was approximately 1.5 × 10^5 spores per gram of feces and approximately half this number by nested PCR. The PCR, the nested PCR in particular, is a time-consuming assay, requiring sophisticated equipment and skilled labor, and consequently is limited to investigative laboratories. The IFA in contrast should make it possible to include the detection of *E. bieneusi* together with other protozoa in routine clinical diagnosis, as it is simple, is more rapid to perform (2 h versus 16 h), and does not require expensive reagents and equipment. The IFA will also make it possible to determine how common *E. bieneusi* is in the environment, particularly in drinking water, and in other mammalian species. The monitoring of *E. bieneusi* should specifically benefit children with malnutrition in developing countries (23) and individuals with immunodeficiencies who are at the greatest risk.

ACKNOWLEDGMENTS

We thank Amanda Little and the animal technicians at the New England Regional Primate Center for technical assistance. This work was supported by NIH grants PO1 DK55510-05 and R21 AI52792.

REFERENCES

