One-Step Immunochromatographic Dipstick Tests for Rapid Detection of *Vibrio cholerae* O1 and O139 in Stool Samples


Institut Pasteur, Paris, France; Institut Pasteur, Antananarivo, Madagascar; and Laboratory Sciences Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh

Received 24 October 2002/Returned for modification 10 December 2002/Accepted 28 January 2003

We describe the development and evaluation of a rapid diagnostic test for *Vibrio cholerae* O1 and O139 based on lipopolysaccharide detection using gold particles. The specificity ranged between 84 and 100%. The sensitivity of the dipsticks ranged from 94.2 to 100% when evaluated with stool samples obtained in Madagascar and Bangladesh. The dipstick can provide a simple tool for epidemiological surveys.

*Vibrio cholerae* strains belonging to the O1 and O139 serogroups are capable of causing epidemic and pandemic cholera. The O1 serogroup is subdivided into two serotypes, Ogawa and Inaba. Serogroup O139, which appeared in India in 1992, has spread rapidly throughout Asian countries and is considered to be the potential eighth pandemic strain of cholera. Prompt diagnosis of cholera is of key importance to initiate effective treatment and to institute proper epidemiological measures. There are definitive indications that the incidence of this serogroup is on the rise in India and Bangladesh.

Several rapid diagnostic tests for cholera have been described. Some detect the cholera toxin (2, 19). The others detect the lipopolysaccharide (LPS) antigen of *V. cholerae* O1 (3, 6, 8, 12, 16) or O139 (1, 10, 14). Recently, a multistep colloidal-gold-based colorimetric immunoassay known as SMART was also developed for direct detection of *V. cholerae* O1 (9, 11) or *V. cholerae* O139 (15) in stool specimens and has demonstrated 95% sensitivity and 100% specificity for O1 strains (11) and 100% sensitivity and 97% specificity for O139 strains (15).

In our effort to develop a conjugate vaccine that targets *V. cholerae* O1 and O139, we have developed monoclonal antibodies specific to *V. cholerae* O1 or O139 LPS (4, 5). Here we have exploited the specificity of the monoclonal antibodies to develop rapid diagnostic tests for cholera O1 or O139 using colloidal gold particles and based on a recently optimized (7) one-step, vertical-flow immunochromatography principle (13). The detection threshold with purified LPS was 10 ng/ml for *V. cholerae* O1 and 50 ng/ml for *V. cholerae* O139. The dipsticks were stable after storage for 21 days at 60, 4, −20, and −80°C.

We have evaluated the sensitivity and specificity of the rapid dipstick tests in the laboratory setting and in two areas of cholera endemicity, namely, in Madagascar and in Bangladesh. The specificity was assessed using 14 pure cultures of *V. cholerae* non-O1/non-O139 and 16 strains belonging to six other species of the genus *Vibrio* (*V. alginolyticus*, *V. fluvialis*, *V. para-haemolyticus*, *V. furnissii*, *V. hollisae*, and *V. mimicus*), seven strains of *Aeromonas* species (*A. caviae*, *A. enteroopelogenes*, *A. hydrophila*, *A. sobria*, and *A. trota*), two strains of *Plesiomonas shigelloides*, and two strains of *Campylobacter jejuni*. Additionally, eight strains of *Yersinia pseudotuberculosis*, 10 strains of *Yersinia enterocolitica*, 35 other strains of *Yersinia* belonging to seven species, and another 47 strains belonging to 11 other genera of *Enterobacteriaceae* were included. The specificity of both dipsticks was 100% for all bacterial cultures. When tested for sensitivity, O1 dipsticks were positive with all 12 strains of *V. cholerae* O1 (100%) and O139 dipsticks were positive with 17 of the 19 strains of *V. cholerae* O139 (89.5%). A minimum of 10⁷ CFU of *V. cholerae* O1/ml or 10⁶ CFU of *V. cholerae* O139/ml is required to give an unequivocal positive reaction.

In Bangladesh, fresh stool samples from suspected cholera patients were cultured for vibrios and other enteric pathogens as described previously (14, 15). Frozen stool samples in which the etiology was known were made available for this study from the specimen bank of the International Centre for Diarrhoeal Diseases Research, Bangladesh. The dipstick test was performed simultaneously by introducing either the O1 or the O139 dipsticks into 200 μl of stool.

For the O1 dipstick evaluation, 102 stool samples were used. Forty-nine were dipstick positive and culture positive, 8 were dipstick positive and culture negative, 3 were dipstick negative and culture positive, and 42 were negative by both tests (Table 2). The sensitivity of the O1 dipstick compared to culture was 94.2% with a specificity of 84%. We further analyzed the eight
TABLE 1. Detection of *V. cholerae* O1 in 140 stool samples or precultures, by O1 dipstick test versus conventional culture (Madagascar)

<table>
<thead>
<tr>
<th>Bacteriological culture</th>
<th>No. of specimens with O1 dipstick test resulta</th>
<th>Total no. of specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
<td>65b</td>
<td>1</td>
</tr>
<tr>
<td>Negative</td>
<td>3c</td>
<td>71</td>
</tr>
<tr>
<td>Total</td>
<td>68</td>
<td>72</td>
</tr>
</tbody>
</table>

a Sensitivity was 98.5%; specificity was 96%.

b The presence of *V. cholerae* serogroup O1 was confirmed in 24 stool specimens and 41 preculture specimens. One preculture was negative.

c One stool specimen was *Shigella* positive.

d Of the 140 samples, 98 were stool samples and 42 were precultures.

In summary the importance of an efficient cholera surveillance system continues to be stressed by World Health Organization with regard to improving risk assessment of potential cholera outbreaks (18). Further, in outbreak situations, a quick diagnosis of cholera is essential for mobilization of resources for treatment and containment of the outbreak. Therefore, the need for sensitive and specific diagnostic tests that can be utilized by minimally skilled personnel and that require negligible laboratory infrastructure is very real. We embarked on this study to fulfill this need, with our priority being the development of a bedside detection test that can be performed by any health care worker and that comes in a format ideally suited for a resource-poor setting.

This work was supported by the Institut Pasteur, Paris (grant PTR 2000-11). Part of the work was funded by a grant from the Government of Japan to the Laboratory Science Division of the ICDDR,B: Centre for Health and Population Research, and by other core donors of the Centre, who share its concern for the health problems of developing countries. We are grateful to F. Qadri, ICDDR,B, for providing us the frozen stool samples. We are grateful to Elisabeth Carniel (Institut Pasteur, WHO Collaborating Centre for *Yersinia*) for provision of strains used in our specificity studies.

REFERENCES


