Identification of Domains of the Hag/MID Surface Protein Recognized by Systemic and Mucosal Antibodies in Adults with Chronic Obstructive Pulmonary Disease Following Clearance of *Moraxella catharralis*

Eric R. LaFontaine¹, Lauren E. Snipes¹, Brian Bullard¹,†, Aimee L. Brauer², Sanjay Sethi³,⁵, Timothy F. Murphy²,⁴,⁵*

¹Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, Divisions of ²Infectious Diseases and ³Pulmonary and Critical Care Medicine of the Department of Medicine, ⁴Department of Microbiology, University at Buffalo, State University of New York ⁵Veterans Affairs Western New York Healthcare System, Buffalo New York 14215

†Present address. Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH 43210

*Corresponding Author. Timothy F. Murphy, M.D., VA Western New York Healthcare System, Medical Research 151, 3495 Bailey Avenue, Buffalo, New York 14215.

Telephone: 716-862-7874

Fax: 716-862-6526

Email: murphyt@buffalo.edu
Moraxella catarrhalis is a common cause of respiratory tract infection in the setting of chronic obstructive pulmonary disease (COPD). Adults with COPD acquire and clear strains of *M. catarrhalis* from the respiratory tract continuously and develop strain specific protection following clearance of a strain. In previous work, we identified Hag/MID, a large multifunctional surface protein that acts as an adhesin and hemagglutinin, as a target of antibody responses in adults with COPD after clearance of *M. catarrhalis*. The goal of the present study was to characterize the domains of Hag/MID to which humans make antibodies, including both systemic and mucosal antibody responses. Analysis of recombinant peptide constructs, which spanned the *M. catarrhalis* strain O35E Hag/MID protein, with well characterized serum and sputum samples revealed that most adults with COPD made antibodies directed toward a region of the molecule bounded by amino acids 706 to 863. Serum IgG and IgA purified from sputum both recognized the same domain. Some flanking sequence of this fragment was necessary for the epitope(s) in this region to maintain its conformation to bind human antibodies. These results reveal that humans consistently generate both systemic and mucosal antibody responses to an immunodominant region the Hag/MID molecule, which was previously shown to overlap with several biologically relevant domains including epithelial cell adherence, IgD binding, collagen binding, and hemagglutination.
Introduction

Chronic obstructive pulmonary disease (COPD) is a debilitating disorder that is the fourth most common cause of death in the United States (1, 2). The course of the disease is characterized by intermittent exacerbations that result in enormous morbidity, including lost work time, hospital admissions, respiratory failure and sometimes death (31). Moraxella catarrhalis is the second most common cause of exacerbations of COPD after nontypeable Haemophilus influenzae (30). It is estimated that M. catarrhalis causes 2 to 4 million exacerbations per year in the United States (19).

Adults with COPD acquire and clear strains of M. catarrhalis from the respiratory tract continuously. When an individual acquires M. catarrhalis, the organism is cleared efficiently after a short duration (~30 days) of carriage. Patients then develop strain specific protection from reacquisition of the same strain (19). This observation that humans develop apparent protective responses to the organism after clearing it from the respiratory tract provides the opportunity to begin to understand protective immune responses to M. catarrhalis.

The identification of surface antigens that are targets of human antibody responses in the setting of COPD has been investigated recently by several research groups. A hallmark of antibody responses to respiratory tract bacterial pathogens in COPD is variability among individuals. Several surface antigens are the targets of antibody responses in a small proportion of adults with COPD following infection with M. catarrhalis (OMP E, CopB, lipooligosaccharide, Msp22, Msp75, Msp78) (17, 18, 28). By contrast, selected surface antigens appear to be more consistent targets of antibody responses in a larger proportion of adults with COPD. These antigens include
outer membrane protein CD, UspA1, UspA2, transferrin binding protein B and Hag/MID (17, 18, 20, 33). The present study focuses on Hag/MID which was the target of new systemic and mucosal antibody responses in a large proportion of adults with COPD who acquired and cleared *M. catarrhalis* in our prospective study (17-19).

Approximately 86% of strains of *M. catarrhalis* contain a *hag/mid* gene and express its product (4, 7, 16, 24, 25, 34). Hag/MID is a multifunctional protein that acts as an adhesin for human respiratory epithelial cells, a B cell mitogen, binds IgD, and mediates hemagglutination (3, 4, 6, 9, 12, 22, 24, 26). Hag/MID is an autotransporter protein, the largest known family of virulence factors expressed by gram negative bacteria (5, 10). The *hag* gene encodes a protein of ~2000 amino acids that exists as a multimer on the bacterial surface. Expression of Hag/MID is subject to translational phase variation, via slipped strand mispairing in a homopolymeric guanine track (16).

The goal of the present study was to characterize both the systemic and mucosal antibody responses to Hag/MID in adults with COPD who have acquired and cleared *M. catarrhalis* from the respiratory tract. Emphasis is placed on identifying the key domains in the Hag/MID protein with regard to both systemic and mucosal antibody responses.

METHODS

COPD Study Clinic. This prospective study has been described previously (19, 30). Patients with COPD were seen at the Buffalo VA Medical Center monthly and whenever they had symptoms suggestive of an exacerbation. At each clinic visit, clinical information and sputum and serum samples were obtained. A clinical evaluation was
performed at each visit to determine whether the patient had stable disease or an exacerbation as previously described.

4 Serum samples. Post clearance serum samples were obtained 4 to 8 weeks following clearance of *M. catarrhalis* from the respiratory tract, based on monthly sputum cultures. Serum samples from patients who were previously demonstrated to have developed a new antibody responses to Hag/MID were studied (18).

5 Sputum supernatant samples. Post clearance sputum samples were obtained 4 to 8 weeks following clearance of *M. catarrhalis* from the respiratory tract based on monthly sputum cultures. After an aliquot of sputum was removed for culture as described previously, sputum supernatants were obtained by centrifugation at 27,000 × g for 30 min at 4°C. The supernatants were saved by storage at -80°C. Sputum supernatant samples from patients who were previously demonstrated to have developed a new sputum antibody responses to Hag were studied (17).

17 Sodium docecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot assays. Recombinant proteins were subjected to SDS-PAGE on 7.5% separating gels. Preparations were heated at 100°C for 5 min in sample buffer containing 0.06 M tris, 1.2% SDS, 5% β-mercaptoethanol, 11.9% glycerol and 0.003% bromophenol blue. Electrophoretic transfer to nitrocellulose was carried out in a Hoefer Mighty Small Vertical Slab Gel Unit at 100 volts for 2 hours. The transfer buffer was 0.025 M tris (pH 8.3), 0.192 M glycine and 20% methanol.
After transfer the blot was incubated in 3% blotto (nonfat dry milk) in buffer A (0.01 M tris, 0.15 M NaCl, pH 7.4) for 1 h at room temperature followed by washing in buffer A. Blots were incubated in serum samples that were diluted in buffer A containing 1% blotto overnight at room temperature. After washing, blots were incubated with goat anti human IgG-IgM (KPL, Gaitherburg, Maryland) diluted in buffer A plus 1% blotto for 1 h at room temperature. Blots were then developed with HRP color developer (BioRad).

Purification of sputum IgA. IgA was purified from sputum supernatant samples by affinity chromatography with a streptococcal IgA binding peptide (SAP) by using a previously described method (17, 29). Briefly, 5 mg of the 50 residue synthetic peptide (purchased from Sigma-Genosys, Woodland, Texas) was immobilized on a 1 ml HiTrap NHS-activated high-performance column (Amersham Pharmacia Biotech) according to the instructions of the manufacturer. Before purification of IgA, sputum supernatants were centrifuged again at 16,000 x g for 30 min at 4°C and filtered through a 0.45µm-pore-size filter. A volume of 1 ml of sputum supernatant was applied to the column, which was then washed with phosphate-buffered saline. Bound proteins were eluted with 0.1 M acetate buffer, pH 4, in fractions of 0.32 ml. The pH of the fractions was adjusted immediately by adding 0.32 ml of 1 M Tris, pH 8.3. Fractions were assayed for the presence of IgA by dotting 1 µl of each fraction onto nitrocellulose and probing with peroxidase-conjugated goat anti-human IgA. The fractions that contained IgA (generally the first 8 fractions) were pooled and stored at 4°C. The protein concentration was determined by the method of Lowry (Sigma). After use, the column was regenerated.
with 3 KSCN, washed with phosphate-buffered saline, and stored at 4°C in 0.05 M Na$_2$HPO$_4$, 0.01% NaN$_3$, pH7.

Construction and expression of recombinant Hag/MID peptides. A PCR product encoding amino acids 67-544 of the *M. catarrhalis* strain O35E Hag/MID protein (i.e. O35E-Hag/MID) was cloned in the expression vector pETcoco-1 (specifies six N-terminal histidine residues, Novagen) using standard recombinant DNA methods. The resulting plasmid was sequenced to verify that no unwanted mutations were introduced during PCR and to confirm that the Hag/MID fragment was properly joined to its fusion partner (i.e. His tag). The plasmid was introduced in the *E. coli* strain TUNER™ (Novagen) for the purpose of over-expressing the recombinant protein (designated His-Hag NT19). Expression was induced by adding IPTG (final concentration of 1 mM) to broth cultures and incubating for 4-8 hours at 37°C with agitation.

Bacteria were pelleted and the His-Hag NT19 polypeptide was extracted from inclusion bodies using the BugBuster HT Protein Extraction Reagent (Novagen) supplemented with rLysozyme™ (Novagen) under the manufacturer’s recommended conditions. The recombinant protein was then purified under denaturing conditions with the His-Bind Resin System per the manufacturer’s instructions (Novagen). The composition of the refolding buffer was determined using the AthenaES Protein Refolding Kit (Athena Enzyme Systems) and urea was gradually removed by dialyzing the His-Hag NT19 preparation at 4°C; protein concentration was determined with the BCA™ Protein Assay Kit (Pierce). His-tagged recombinant proteins encompassing aa 545-1367 (designated His-Hag MID1) as well as residues 1368-1964 (designated His-Hag CT77) of O35E-Hag/MID were generated in the same manner. A similar approach was used to purify a series of GST-tagged proteins encompassing different regions of the predicted surface-exposed domain of O35E-Hag/MID (i.e. aa 67-1865) with minor modifications. Specifically, we used the plasmid pGEX4T-2 (specifies N-terminal GST tag, GE Healthcare Life Sciences) for cloning Hag/MID.
fragments and Pierce’s GST Fusion Protein Purification system to purify recombinant proteins.

The various GST-tagged proteins that were generated are illustrated by the black bars in Figure 5.

Results

Characterization of serum and sputum samples. All serum and sputum samples were from adults with COPD who were followed in the COPD Study Clinic at the Buffalo Veterans Affairs Medical Center as part of a prospective study. In previous work, pairs of pre acquisition and post clearance serum and sputum samples were studied by whole cell ELISA and flow cytometry and these studies identified patients who developed new antibodies to surface epitopes on *M. catarrhalis* (19). Subsequent work utilizing immunoblot assays with isogenic mutants identified 9 pairs of serum samples that showed the development of new serum IgG to Hag/MID and 9 pairs of sputum samples that showed the development of new sputum IgA to Hag/MID following clearance (Figure 1)(17, 18). The present study involves analysis of these well characterized serum and sputum samples to elucidate the regions of Hag/MID that are important in the human immune response.

Identification of Hag/MID domains recognized by human serum antibodies. To begin to identify the regions of the Hag/MID protein that are recognized by human serum antibodies, recombinant peptide constructs corresponding to three large fragments of the protein were created and studied in immunoblot assays with each of the 9 serum samples noted above. All serum samples contained serum IgG that recognized the central (*i.e.* aa
545-1367) and carboxy terminal (i.e. aa 1368-1964) fragments of the Hag/MID protein (Table 1). Only two of the 9 sera contained antibodies to the amino terminal fragment. Based on these initial results and on the observation that the central region of the molecule (i.e. aa 545-1367) contains adhesin domains for respiratory epithelial cells, type IV collagen and IgD binding (see Figure 2), additional peptide constructs encompassing most of this biologically relevant area of the molecule were designed and produced as GST fusion peptides. Figure 3 shows the recombinant proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and analyzed by western blot with an anti-GST antibody.

These GST-tagged polypeptides were subjected to immunoblot assays with the human serum samples. Figure 4 (top panels) shows representative immunoblot assays with two serum samples demonstrating that 3 of the peptide constructs were recognized by serum IgG in the serum of adults with COPD. The region of Hag/MID encompassing these peptides contains a coiled coil structure. Such peptides characteristically run aberrantly and form aggregates in SDS-PAGE, accounting for the presence of multiple bands recognized by antibodies in some of the serum and sputum samples. Figure 5 shows a summary of results of the 9 serum samples with the 8 recombinant peptides in immunoblot assay. Clearly, the region of the Hag/MID molecule corresponding to amino acids 706 to 863, which is common to constructs 2-1, 5-9, and 10-2, is a key domain with regard to binding of human serum IgG. However, based on the absence of reactivity of the fragment corresponding to amino acids 706 to 863 (construct 9-1 in Fig. 5A), this region of the molecule alone is not sufficient to bind human serum IgG antibodies. The
presence of flanking sequence, either upstream or downstream, appears to be necessary
for the epitope(s) in the 706 to 863 region to bind human serum IgG.

Identification of Hag domains recognized by human sputum IgA. Based on the
results of the assays with serum samples that targeted the central region of the molecule
and on the limited amounts of purified IgA from sputum samples that were available,
purified sputum IgA samples were studied directly with the peptide constructs noted in
Figure 5. Figure 4 (bottom panels) shows representative immunoblot assays with
purified human IgA from the sputum of two patients. Although the sputum IgA
responses were a bit less homogeneous than serum IgG responses, the same three peptide
constructs that were recognized by serum IgG were also the most dominant constructs
recognized by samples of sputum IgA (Figure 5). Thus, the region corresponding to
amino acids 706 to 863 of O35E-Hag/MID is also the key region for binding of mucosal
IgA.

Discussion
In this study, well characterized serum and sputum samples from adults with
COPD followed prospectively were used to elucidate the regions of the Hag/MID
molecule that are important targets of human systemic and mucosal antibody responses.
A remarkable degree of consistency was observed among the samples studied.
Recombinant peptide fragments of the O35E-Hag/MID protein that contained the 157
amino acid domain from amino acid 706 to 863 were recognized by IgG in all serum
samples studied and by the IgA purified from a majority of sputum samples studied. Of
interest, the construct that was comprised of the 157 amino acid domain itself (aa 706 to 863) was non reactive in immunoblot assay. However, the 3 constructs that contained the 157 amino acid domain along with either upstream or downstream peptide sequence were consistently reactive. The most likely explanation for this observation is that some flanking sequence is required for the epitope(s) that are recognized by human antibodies to maintain their conformation.

In addition to epitopes in the central region of Hag/MID, all 9 serum samples bound epitopes in the carboxy region of the molecule (Table 1). By contrast, only two sera contained antibodies to the amino terminal region. This observation suggests that the amino terminal region of Hag/MID is less immunogenic. However, another explanation may be sequence heterogeneity in the amino terminal region of the molecule. Bullard et al (4) demonstrated that the amino terminal region of Hag/MID has only 36.8% identity among isolates. The present study was conducted with peptide constructs of strain O35E, thus raising the possibility of strain specificity of antibody responses accounting for the observation that only a small proportion of sera contained antibodies to this region of the molecule. The percent identity among Hag/MID isotypes for the peptides tested in our study is consistent with this hypothesis (Figure 5). An additional limitation of the present study is the GST tags that are present on the amino terminus of the recombinant peptides may block the binding of selected antibodies to their corresponding epitopes. The use of overlapping constructs (Figure 5) minimizes but does not eliminate this limitation.

The hag/mid ORF of M. catarrhalis strain O35E is predicted to encode a protein of 1,964 residues with a MW of 201-kDa (24). Previous sequence analysis (4) indicated
that this large molecule resembles members of the Oca (Oligomeric coiled-coil adhesins) family of autotransporter proteins (11), which includes the well-characterized adhesins *Yersinia enterocolitica* YadA (11, 23, 27), *H. influenzae* Hia(13, 32, 35) and *M. catarrhalis* UspA1 (11, 14). These Oca proteins share structural features including a C-terminal OM anchor domain composed of 4 β-strands (also referred to as the transporter domain) connected to a surface-exposed passenger domain often containing repeated aa motifs (5, 10, 11, 15). As depicted in Fig. 2, O35E-Hag/MID possesses these conserved features. Dr. Kristian Riesbeck’s group at Lund University reported that a recombinant protein corresponding to aa 764-913 of the *M. catarrhalis* strain Bc5 Hag/MID protein binds to A549 cells as well as erythrocytes (6), and that residues 962-1200 are responsible for IgD binding (7, 21). Moreover, Bullard and colleagues (3) recently demonstrated that aa 385-745 of Hag/MID of strain O35E specify adhesive properties for human lung (NCI/H292) and middle ear (HMEE) epithelial cells, and that residues 706-1194 are necessary for binding to type IV collagen. The regions of Hag/MID of strain O35E corresponding to these biologically relevant domains (i.e. A549•CBD, NCI/HMEE•CBD, collagen binding, and IgD binding) are also shown in Fig. 2. Of note, Hag/MID of strain O35E (1,964 residues) is smaller than Hag/MID of strain Bc5 (2,139 residues). For this reason, some of the numbering in the text does not match that in Figure 2.

Tan et al (33) studied the specificity of serum antibodies to Hag/MID in acute and convalescent sera from adults with COPD. In contrast to our patients, the majority of their patients (17 of 23) had pre-existing serum antibodies to Hag. The patient samples
identified for analysis in the present study were selected based on the criterion that they
developed new antibody responses following acquisition and clearance, allowing us to
characterize the specificity of the antibody response specifically to the episode of carriage
under consideration. Of interest, the antibody responses of the six patients in the Tan
study who developed new antibody responses were directed at aa 764-913 of the
Hag/MID protein of *M. catarrhalis* strain Bc5, which is the same general region of
O35E-Hag/MID identified in our experiments. Thus, the present study further highlights
this region of the molecule as a target of mucosal antibody responses that were made
following acquisition and clearance of *M. catarrhalis* from the respiratory tract.

A key question raised by the present study is whether antibodies to Hag/MID may
mediate protective responses. Based on the results presented here, it is not possible to
draw conclusions regarding the potential protective effect of antibodies to Hag/MID.
However, the results will facilitate studies to test the hypothesis that human antibodies to
Hag/MID mediate a protective effect in COPD. In the context of a prospective study,
measuring antibody levels to the key region of Hag/MID and then assessing the
subsequent rate of infection relative to antibody level will allow conclusions regarding a
potential protective effect. It will be important to assess mucosal antibody responses to
Hag/MID in addition to systemic responses, particularly in view of the observation that
the development of a mucosal antibody response is associated with fewer symptoms of
exacerbation, suggesting that mucosal antibody responses to *M. catarrhalis* may mediate
partial protection in adults with COPD (19).

Hag/MID is a multifunctional molecule that mediates several potential virulence
mechanisms, including adherence to respiratory epithelial cells, hemagglutination, IgD
binding, B cell mitogenicity and collagen binding. In addition, Forsgren et al have demonstrated that immunization of mice with the same peptide that mediates hemagglutination and adherence to alveolar cells (i.e. A549•CBD) induces enhanced clearance in the mouse pulmonary clearance model (8). Figure 2 shows that regions of the molecule that mediate each of these activities are clustered in the central portion of the Hag/MID molecule. The domain of Hag/MID that was identified in the present study as a key target of human systemic and mucosal antibodies overlaps a portion of all of the domains noted above, suggesting that this region of Hag/MID has the potential to induce protective immune responses in humans. One might speculate that immune responses to this domain might block adherence to epithelial cells or mediate enhanced clearance from the respiratory tract. Future work will focus on characterizing the potentially protective effect of human systemic and mucosal antibody responses to this region of Hag/MID.

Acknowledgements.

This work was supported by NIH grants AI 051477 (ERL) and AI28304 (TFM) and by the Department of Veterans Affairs.
References

8. Forsgren, A., M. Brant, and K. Riesbeck. 2004. Immunization with the truncated adhesin *Moraxella catarrhalis* immunoglobulin D-binding protein...
(MID764-913) is protective against *M. catarrhalis* in a mouse model of pulmonary clearance. J Infect Dis **190**:352-355.

Table 1. Reactivity of human serum IgG to regions of the Hag/MID molecule

<table>
<thead>
<tr>
<th>Serum Sample</th>
<th>His-Hag NT19 aa 67-544</th>
<th>His-Hag MID1 aa 545-1367</th>
<th>His-Hag CT77 aa 1368-1964</th>
</tr>
</thead>
<tbody>
<tr>
<td>10E67</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>11E31</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>19E55</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>32E8</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>39E34</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>46E49</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>52E4</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>63E25</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>87E16</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Figure Legends

Figure 1. Origin of serum and sputum samples from adults with COPD who made antibody responses to Hag/MID following acquisition and clearance of \textit{M. catarrhalis} from the respiratory tract as documented in previous studies (17-19).

Figure 2. Structural features of the \textit{M. catarrhalis} O35E \textit{hag/mid} gene product. The positions of residues defining selected domains and regions of antibody binding are shown. NCI/HMEE • CBD: Cell-binding domain for NCIH292 and HMEE cells, A549• CBD: Cell-binding domain for A549 cells and erythrocytes.

Figure 3. Immunoblot assay of GST-Hag recombinant proteins. Purified polypeptides were resolved by SDS-PAGE, transferred to PVDF, and probed with an anti-GST antibody. Construct names are shown at the bottom. Molecular mass markers are noted on the left. Refer to Figure 5 for details regarding what portion of O35E-Hag MID is specified by each construct.

Figure 4. Immunoblot assays of recombinant peptides of Hag with human serum samples (top panels) and IgA purified from human sputum samples (bottom panels) from adults with COPD who developed new antibody responses to Hag/MID following acquisition and clearance of \textit{M. catarrhalis}. Lanes contain Hag/MID peptide constructs as follows: a. 10-2 (aa 706-1194), b. 9-1 (aa 706-863), c. 5-9 (aa 385-863), d. 5-3 (aa 385-550), e. 4-11 (aa 385-745), f. 2-4 (aa 284-550), g. 2-1 (aa 284-863), h. 1-1 (aa 284-745). Molecular mass markers are noted on the right of each panel in kilodaltons.
Figure 5. Results of immunoassays with 8 recombinant peptide constructs of Hag/MID. The black bars on the left indicate the amino acid numbers that comprise each of the GST-tagged recombinant proteins. Construct names are shown to the left of each bar. The right side indicates results of immunoblot assays with each of the constructs assayed for serum IgG (top) and sputum IgA (bottom) from adults with COPD who acquired and cleared *M. catarrhalis*. A “+” indicates reactivity in immunoblot assay and an empty box indicates absence of reactivity. The numbers at the bottom of the serum IgG panel indicate the results with the following serum samples 1, 10E67; 2, 19E55; 3, 32E8; 4, 39E34; 5, 11E31; 6, 46E49; 7, 52E4; 8, 63E25; 9, 87E16. The numbers at the bottom of the sputum IgA panel indicate results with IgA purified from sputum supernatants 1, 3PS68; 2, 12PS75; 3, 7PS95; 4, 10PS92; 5, 19PS55; 6, 66PS6; 7, 29PS25; 8, 44PS24; 9, 1PS45. The % identity of Hag/MID among 7 strains whose hag/mid has been sequenced is noted on the right.
50 patients acquired and cleared 120 strains of M cat

54 of 106 positive in whole cell ELISA

38 of 97 positive in flow cytometry

12 samples with largest increase chosen for further study

9 of 12 patients made new antibody to Hag

38 of 97 positive in flow cytometry

10 samples with largest increase chosen for further study

9 of 10 patients made new antibody to Hag
• Target of IgG in convalescent sera from adults with COPD (32)
• Protection in mice (8)
• Target of IgG and IgA following acquisition and clearance of
 M. catarrhalis by adults with COPD (this study)

• Target of IgG in convalescent sera from adults with COPD (32)
• Target of IgG following acquisition and clearance of *M. catarrhalis*
 by adults with COPD (this study, His-Hag-CT-77 in Table 1)