Cryptococcus neoformans is a fungus that causes life-threatening meningoencephalitis in 6 to 8% of patients with advanced human immunodeficiency virus (10). Cryptococcal meningoen cephalitis in patients with AIDS is often incurable, because antifungal therapy does not eradicate the infection in the setting of impaired immunity (17). The difficulties associated with treatment of cryptococcal infections have stimulated interest in the potential usefulness of immunotherapy, including antibody therapy (1). A murine monoclonal antibody (MAb) to the C. neoformans capsular glucuronoxylomannan (GXM) (3) is currently in phase I evaluation as adjunctive therapy for cryptococcal meningitis. However, since murine MAbs can elicit human anti-mouse antibody responses that reduce their efficacy in therapy (2), it is desirable to develop antibodies with a human constant region to reduce antigenicity and provide better human effector functions.

Currently, little information is available regarding the relative efficacy of human constant regions against fungi. We are aware of only two reports in the literature evaluating human constant region genes in immunoglobulin G2 (IgG2) and kappa, respectively, to construct a chimeric antibody (ch2H1). ch2H1 retains the specificity of the parent MAb, exhibits biological activity, and lacks the toxicity of the parent murine IgG1 in chronically infected mice.
producing subclone was then transfected with 10 μg of the heavy chain vector linearized with *Pvu* I. These cells were initially selected on 13 mM histidinol during the first feeding with drug selection. They were then fed with 10 mM histidinol on the second feeding. Surviving clones were assayed by ELISA for IgG2 production. Those scoring positive were biosynthetically labeled by growth in [35S]methionine. The secreted protein was precipitated with anti-human IgG, and then analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Selected clones synthesizing the correct product were subcloned, and the highest-producing subclone was designated for further study. ch2H1 was purified from cell supernatant by protein A affinity chromatography (Pierce, Rockford, Ill.).

C. neoformans strain 24067 was obtained from the American Type Culture Collection. Other strains used in this study were J9A, J11, CN 110, H99, 62066, NIH 34, and CN 15. All strains were maintained in a suspension of 50% sterile glycerol at –80°C. Capsular GXM was purified as described previously (6). The ELISA for MAb binding to GXM was done as described above, except that goat anti-human IgG labeled with alkaline phosphatase (Sigma Chemical Co., St. Louis, Mo.) was used as a secondary reagent (5). The ability of m2H1 and ch2H1 to compete for GXM binding was studied by ELISA in experiments like those used in the past to study antibody specificity (4). Immunofluorescence and agglutination assays were done as described previously (7). Phagocytosis assays were done with the J774.16 cell line as described previously (15). The phagocytic index represents the number of ingested and attached yeast cells divided by the number of macrophages. The ability of ch2H1 to elicit acute lethal toxicity was determined in Swiss Webster mice (Charles River Laboratories, Inc., Wilmington, Mass.) infected with 5 × 10⁵ yeast cells (strain 24067) via tail vein injection as described previously (12, 16). Eight days after infection, the mice were bled from the retroorbital plexus. Their serum was analyzed to determine the concentration of cryptococcal polysaccharide antigen, and a baseline hematocrit was obtained. Mice were placed into two experimental groups and matched for approximately equivalent serum polysaccharide levels. On the 10th day following infection, the mice were given 0.5 mg of antibody through the tail vein. The endpoint to determine toxicity was death, with a secondary endpoint being observed signs of illness, such as ataxic gait or shivering. These clinical signs have been observed in prior experiments with antibody-mediated acute lethal toxicity (ALT) (12, 13).

Mouse-human chimeric antibodies retain the murine antigen binding site and, on this basis, should retain the same specificity. However, constant region interactions can affect antigen binding (8, 9), and we compared the binding of m2H1 to that of ch2H1 by using several serological assays, including two ELISAs, an agglutination assay, and indirect immunofluorescence. One ELISA measured the binding of different concentrations of antibody to a constant amount of GXM attached to polystyrene (Fig. 1). The second assay measured the binding of a constant antibody concentration to a plate coated with various amounts of GXM (Fig. 2). Although minor differences in antibody binding as denoted by absorbance readings were measured at high and low antibody and antigen concentrations in the ELISAs, both antibodies exhibited similar binding characterics. The competition assay revealed that m2H1 inhibited the binding of ch2H1 (Fig. 3). The agglutination endpoints of ch2H1 and m2H1 for *C. neoformans* cells were 3.125 (1:32) and 1.56 (1:64) μg/ml, respectively, which are within the error of the measurement. Both ch2H1 and m2H1 produced identical annular indirect immunofluorescence patterns when bound to a panel of *C. neoformans* strains (data not shown). Hence, ch2H1 and m2H1 displayed very similar binding characteristics by the four serological assays.

To determine whether the constant region in the ch2H1

FIG. 1. Binding of m2H1 and ch2H1 to GXM by ELISA under conditions in which the antibody concentration is held constant (1 μg/ml) and the amount of GXM added to the well is varied as shown.

FIG. 2. Binding of m2H1 and ch2H1 to GXM by ELISA under conditions in which the GXM added to the well is held constant (1 μg/ml) and the antibody concentration is varied as shown.
antibody was functional, we tested its ability to promote phagocytosis with a macrophage-like cell line. m2H1 is known to be a potent opsonin for *C. neoformans*, but there are no data available for the efficacy of the human IgG2 constant region against this fungus. Both m2H1 and ch2H1 significantly enhanced the uptake of yeast cells by the J774.16 cells. The *P* values for m2H1 and ch2H1 compared to those for cells with no antibody added were both *P* < 0.001, with a 95% confidence interval (Student’s *t* test). The opsonic efficacy of m2H1 was significantly better than that of ch2H1 (*P* = 0.004, 95% confidence interval).

Administration of murine IgG1 MAb to Swiss Webster mice chronically infected with *C. neoformans* can produce acute lethal toxicity (16). The administration of ch2H1 to mice during the acute stage of infection with *C. neoformans* produced no toxicity. All four mice receiving ch2H1 survived, and none displayed abnormal behaviors associated with ALT, such as ataxic gait and shivering (12). In contrast, all mice receiving m2H1 exhibited toxicity, and three of six mice died within 1 h of antibody injection (12). Their symptoms preceding death were similar to the previously described onset of ALT (12, 13).

The effort to create chimeric antibodies is driven primarily by an effort to reduce the toxicity and increase the efficacy of murine antibodies. A toxicity particular to efforts to develop antibody therapy for *C. neoformans* infection is demonstrated by the fact that administration of antibody to mice with chronic infection can lead to ALT (16). ALT results from the release of platelet-activating factor as a consequence of Fc receptor cross-linking (13). ALT is associated with certain murine isoatypes (12, 13), and there is currently no information on whether human constant regions mediate this effect. ch2H1 did not cause ALT in our experiment, while the mice receiving m2H1 had a 50% mortality rate. This experiment highlights the critical role of the constant region in the ALT effect and indicates that human IgG2, like murine IgG3 (12), does not cause this effect.

In summary, we report the construction of a chimeric MAb derived from the murine MAb m2H1. The antibodies had similar binding patterns to the capsular polysaccharide of *C. neoformans*. Both were potent opsonins of yeast cells in an in vitro experiment with murine macrophages. Unfortunately, the ch2H1 cell line is a low antibody producer, and we did not obtain sufficient amounts of protein to investigate its protective efficacy. These results indicate that both the antigen binding site and the constant region of the ch2H1 are functional. The absence of toxicity in mice suggests a potential advantage to the human IgG2 isotype over murine IgG1.

A.C. is supported by NIH awards AI33774, AI3342, and HL-59842-01 and is a recipient of a Burroughs Wellcome Development Therapeutics Award.

REFERENCES

19. Yuan, R., A. Casadevall, G. Spira, and M. D. Scharff. 1995. Isotype switching from IgG3 to IgG1 converts a non-protective murine antibody to *C. neofor-
20. Yuan, R. R., G. Spira, J. Oh, M. Paizi, A. Casadevall, and M. D. Scharff. 1998. Isotype switching increases antibody protective efficacy to *Cryptococcus neofor-
ulin G1 chimeric antibodies with activity against *Cryptococcus neofor-