Reactivities of Lewis Antigen Monoclonal Antibodies with the Lipopolysaccharides of Helicobacter pylori Strains Isolated from Patients with Gastroduodenal Diseases in Japan

KEN-ICHI AMANO,1,* SHYUNJI HAYASHI,2 TORU KUBOTA,2 NOBUHIRO FUJII,2 AND SHIN-ICHI YOKOTA3

Central Research Laboratory, Akita University School of Medicine, Akita 010,1 Department of Microbiology, Sapporo Medical University, Sapporo, Hokkaido 060,2 and Sumitomo Pharmaceutical Research Center, Konohana-ku, Osaka 554,3 Japan

Received 7 March 1997/Returned for modification 2 June 1997/Accepted 24 June 1997

We have examined the reactivity of monoclonal antibodies (MAbs) specific for Lewis antigens (Lea, Leb, and Le) with Helicobacter pylori lipopolysaccharides (LPS) by immunoblot analysis and enzyme-linked immunosorbent assay (ELISA). Sixty-eight strains of H. pylori were isolated from patients with chronic gastritis, gastric and duodenal ulcers, and gastric cancer in Japan. The cells were treated with proteinase K, and the resulting fractions were used as a source of LPS for the immunoassays. In the immunoblot analysis, 28 isolates (41%) and 29 isolates (42%) reacted with anti-Lea and anti-Leb MAbs, respectively, while 4 isolates (6%) and 7 isolates (10%) reacted with anti-Lea and anti-Leb MAbs. On the other hand, in ELISA, the number of isolates that reacted with anti-Lea MAbs fell significantly to 21 isolates (30%) but the number of isolates that reacted with the other anti-Lewis antigen MAbs remained relatively unchanged. These data show that the immunoblotting technique is more sensitive than the ELISA technique for the detection of immunocomplexes of anti-Lea MAbs and components of H. pylori LPS. Furthermore, human serum was found to react with the synthetic Lewis antigens regardless of the status of the individual’s H. pylori infection. This means that humans may naturally possess antibodies against Lewis antigens in the absence of H. pylori infection.

The microaerophilic bacterium Helicobacter pylori has been suggested to be a causative agent of chronic gastritis, gastritic and duodenal ulcers, and gastric carcinoma (17). Despite its importance as a human pathogen, the characterization of the surface structures of this bacterium is still incomplete. Especially, knowledge about the biological significance and structure of H. pylori lipopolysaccharide (LPS), one of the key components of the outer membrane of the bacterium, is limited. Recently, Moutiala et al. (16) reported that H. pylori LPS was less toxic than the LPS from Enterobacteriaceae when tested for mitogenicity, pyrogenicity, and toxicity. Perez-Perez et al. (19) also reported low biological activity of H. pylori LPS in mediation of macrophage activation. Aspinall et al. (5–7) determined the structures of the LPS O polysaccharides of three strains of H. pylori and found them to be the same as the Lewis x (Lea) and Lewis y (Leb) determinants of the human cell surface glycoconjugates. More recently, Appelmelk et al. (3) suggested that the mimicry of Lewis antigens by this organism might explain the autoimmune mechanism of H. pylori-associated type B gastritis.

In this study, we have compared the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns of H. pylori LPS isolated from patients with chronic gastritis, gastritic and duodenal ulcers, and gastric carcinoma in Japan and examined the reactivity of the LPS fractions with monoclonal antibodies (MAbs) specific for Lewis and other mammalian carbohydrate antigens by immunoblotting and enzyme-linked immunosorbent assay (ELISA). Furthermore, we have examined the reactivity of H. pylori LPS with sera obtained from humans infected or not infected with H. pylori.

MATERIALS AND METHODS

Bacterial strains and cultivation. H. pylori 43504-r was a spontaneous rough mutant derived from ATCC 43504, which was purchased from the American Type Culture Collection (Rockville, Md.). Clinical strains of H. pylori were isolated from lesion biopsy specimens obtained from patients with chronic gastritis (strains CG1 to CG19), gastritic ulcers (DU1 to DU9), duodenal ulcers (DU1 to DU9), and gastric cancer (tumor and nontumor sites; CA1 to CA10 and CA11 to CA15). After three to five laboratory subcultures, these bacteria were grown on brain heart infusion agar plates supplemented with 10% horse blood at 37°C for 5 days under microaerophilic conditions (Gas Pack Systems without catalyst; BBL, Cockeysville, Md.). The organisms were collected, washed with phosphate-buffered saline (PBS) three times, and lyophilized.

MAbs against Lewis antigens. The specificities of MAbs against Lewis antigens are listed in Table 1. Clones 73-30 and H18A were purchased from Sekagaku Kogyo (Tokyo, Japan); clones BG-7 (P12), BG-8 (F3), and BG-6 (T218) were purchased from Signet Laboratories (Dedham, Mass.); and clones MAB2108 (7LE) and MAB2102 (2SLE) were purchased from Chemicon (Temecula, Calif.).

Synthetic Lewis oligosaccharide conjugates. The synthetic Lewis antigens were conjugated with either human serum albumin (HSA) purchased from Isoep AB (Tullinge, Sweden) or a biotinylated polymer probe (BP) purchased from Isoep AB.

Human sera. The sera of 25 patients with chronic gastritis, gastritic ulcers, duodenal ulcers, and gastric cancer and the sera of 83 healthy adult volunteers were obtained from the hospitals of Sapporo Medical University and Akita University School of Medicine (Akita, Japan). The status of H. pylori infection of each individual was monitored with an enzyme immunoassay kit with Determiner H. pylori antibody (HM-CAP) (Kyowa Medics, Tokyo, Japan).

ELISA. For HSA-conjugated Lewis antigens, the HSA conjugates were dissolved in PBS at a concentration of 10 μg/ml and were dispensed into a Microtitre III flexible assay plate (Becton Dickinson, Oxnard, Calif.). After incubation at 4°C overnight, the plate was blocked with 1% HSA. For BP-conjugated Lewis antigens, Streptavidine-Plus (Prozyme, San Leandro, Calif.) at a concentration of 5 μg/ml was dispensed into a microplate. The BP conjugates, at a concentration of 2 μg/ml, were dispensed to the streptavidin-coated plates and incubated at 37°C for 1 h. For H. pylori LPS, the whole cells were treated with proteinase K (PK) (Merck, Darmstadt, Germany) as described previously (1, 25), dissolved

* Corresponding author. Mailing address: Central Research Laboratory, Akita University School of Medicine, 1-1-1 Hondo, Akita, Akita 010, Japan. Fax: 81-188-57-4398. E-mail: amanocrl@med.akita-u.ac.jp.
at a concentration of 10 μg/ml with 50 mM sodium carbonate buffer (pH 9.6), and dispensed into a microplate. After incubation at 4°C overnight, the plate was blocked with 1% HSA. MAbs against Lewis antigens and human sera were diluted with PBS containing 0.05% Tween 20 and 3% HSA at appropriate concentrations and used as primary antibodies. Horseradish peroxidase-conjugated goat anti-murine immunoglobulin antibody (BioSource International, Camarillo, Calif.) or anti-human immunoglobulin G (IgG) antibody (BioSource International) was used as a secondary antibody, and the tetramethyl benzidine peroxidase substrate system was used to reveal the immune complexes (Kirkegaard & Perry Laboratories, Gaithersburg, Md.). Absorbance at 450 nm was measured after termination of the reaction with 1 M phosphoric acid.

RESULTS

SDS-PAGE patterns of LPS from H. pylori. The molecular sizes and microheterogeneity of LPS fractions from 69 strains of *H. pylori* that had been treated with PK were compared on SDS-PAGE gels after silver staining (Fig. 1). The LPS of most strains showed some ladder bands, resembling those of the smooth-type LPS of enterobacteria, in the high-molecular-weight area of the gel and one or two bands, characteristic of rough-type LPS, in the low-molecular-weight area. However, LPS from strains CG5, CG10, CG12, CA1, and CA7 showed only one band in the fast-migration zone of the gel. Although the LPSs from strains CAIN and DU8 also showed single bands, the migration rates of these bands were somewhat retarded compared to those of the LPS bands described above. LPS from strain 43504-r showed some bands in the low-molecular-weight area but no ladder bands. LPS from strain CA3N had only ladder bands. Furthermore, strains GU4, GU6, and DU7 exhibited either low amounts of LPS or no LPS at all. The different numbers of bands and the altered migration rates of the major bands in all of these LPS fractions indicated that the LPSs from different strains of *H. pylori* are structurally distinct.

Specificity of anti-Lewis antigen MAbs for synthetic Lewis antigens. Figure 2 shows that the Lewis antigen MAbs recognized the synthetic Lewis antigens, thus confirming the specificity of these MAb preparations. Two anti-Le^a^ MAbs (73-30 and BG-7) reacted with only 2 Le^a^ substrates (Le^a^-HSA and...
Tri-Le^a^-HSA). Two anti-Le^a^-MAbs (H18A and BG-8) mainly reacted with the Le^a^-substrate, but the H18A MAb also weakly reacted with Le^b^-substrates. Two anti-Le^b^-MAbs (BG-5 and MAB2108) reacted with Le^b^-HSA, but only BG-5 reacted with Le^b^-BP. Two anti-Le^b^-MAbs (BG-6 and MAB2102) reacted with Le^b^-HSA and Le^b^-BP; however, MAB2102 also reacted with Le^a^-HSA but not with Le^b^-BP. Based on the reactivities of MAB2102 and MAB2108 with two Le^a^-substrates, these MAbs may be recognizing the number of sugar residues of Le^a^-HSA (four saccharides) and Le^a^-BP (three saccharides). In the low-dilution range (1/100), BG-5 and BG-6 weakly cross-reacted with other substrates.

Reactivity of anti-Lewis antigen MAbs with *H. pylori* LPS.

The specificity of anti-Lewis antigen MAbs for *H. pylori* LPS was tested by carrying out immunoblotting and ELISA of PK-treated whole cells. On the basis of the reactivities of the anti-Lewis antigen MAbs to the synthetic antigens, we decided that all MAbs except MAB2102 were suitable for the analysis of *H. pylori* LPS. Figure 3 shows the reactivities of anti-Lewis antigen MAbs to 12 *H. pylori* LPS fractions subjected to immunoblot analysis. LPS from 43504-r and CG7 did not react with any MAbs. However, the LPS from these latter strains showed O polysaccharide-containing LPS on silver-stained PAGE gels. LPS from GU9 and CA4 reacted with only anti-Le^x^-MAbs, and LPS from CG9 and GU10 reacted with anti-Le^x^- and anti-Le^y^-MAbs, respectively. On the other hand, LPS from DU1 and DU2 reacted with anti-Le^y^- and anti-Le^b^-MAbs, and LPS from GU2 and CA6 reacted with anti-Le^a^- and anti-Le^b^-MAbs. Furthermore, LPS from CG4 and CA2 reacted with anti-Le^a^- and anti-Le^b^-MAbs. Generally, the reactivity of anti-Le^x^-MAbs with *H. pylori* LPS was weak in comparison to that of anti-Le^y^-MAbs. Table 2 summarizes the data from immunoblot analysis and ELISA concerning the reactivities of these MAbs to all the *H. pylori* LPSs under study. On immunoblots, 28 (41%) and 29 isolates (42%) reacted with anti-Le^y^- and anti-Le^a^-MAbs, respectively, while only 4 (6%) and 7 isolates (10%) reacted with anti-Le^a^- and anti-Le^b^-MAbs, respectively. In ELISA, the isolates recognized by anti-Le^x^-MAbs decreased significantly to 21 isolates (30%) but the numbers of isolates recognized by the other anti-Lewis antigen MAbs scarcely changed compared to the numbers obtained by immunoblot analysis. We classified these LPSs into nine groups according to their reactivities with anti-Lewis antigen MAbs. The nonreactive LPSs were classified as groups 1 to 9, and the reactive LPSs were classified as groups A to I.
TABLE 2. Reactivity of H. pylori LPS with anti-Lewis antigen MAbs

<table>
<thead>
<tr>
<th>LPS type</th>
<th>Le(x)</th>
<th>Le(y)</th>
<th>Le(a)</th>
<th>Le(b)</th>
<th>Immunoblotting</th>
<th>ELISA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(S)</td>
<td>8 (12)</td>
<td>15 (22)</td>
<td>10 (14)</td>
<td>12 (17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A(R)</td>
<td>17 (25)</td>
<td>12 (17)</td>
<td>10 (14)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>15 (22)</td>
<td>12 (17)</td>
<td>2 (3)</td>
<td>0 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2 (3)</td>
<td>8 (12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>4 (6)</td>
<td>7 (10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1 (1)</td>
<td>3 (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>9 (13)</td>
<td>1 (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>2 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* In the immunoblotting, all MAbs against Lewis x, y, a, and b antigens, except MAB2102 (anti-Le\(b\)), were used as primary antibodies at a dilution of 1:250. In the ELISA, 73-30 (1:50 dilution) and BG7 (1:20) were used as anti-Le\(x\) MAbs, H18A (1:100) and BG8 (1:50) were used as anti-Le\(y\) MAbs, BG5 (1:20) and MAB2108 were used (1:100) as anti-Le\(a\) MAbs, and BG6 (1:20) was used as the anti-Le\(b\) MAb.

active type A was further divided into two types, A(S) and A(R), according to the presence and absence of O-polysaccharide moieties, respectively, as deduced from silver-stained SDS-PAGE gels. H. pylori LPSs were mainly classified into types A(S), A(R), B, C, and F on the basis of the immunoblot analysis and into types A(S), A(R), B, and C on the basis of the ELISA. If the numbers of strains detected by immunoblotting and ELISA are compared, H. pylori strains with LPS of type A(S) were detected at a higher frequency by ELISA, unlike H. pylori strains with LPS of types B and C. These data suggested that immunoblotting was more sensitive than ELISA for the detection of Lewis antigens by anti-Lewis antigen MAbs in the LPS fractions of H. pylori, especially for the detection of Le\(a\)-related antigens.

Reactivity of human sera against synthetic Lewis antigens.

We analyzed the reactivity of sera from patients with chronic gastritis, gastric ulcers, duodenal ulcers, and gastric cancer and the sera from H. pylori-infected individuals and uninfected controls with five kinds of synthetic Lewis antigens (Fig. 4). All the human sera recognized these antigens individually, and the immunological reactions were independent of the status of the diseases. Specifically, we were able to demonstrate the extensive reactivities of anti-Le\(x\) and anti-Le\(y\) MAbs with H. pylori LPS compared to those of anti-Le\(a\) and anti-Le\(b\) MAbs, confirming results obtained previously by Appelmelk et al. (3), Simoons-Smit et al. (22), and Wirth et al. (24). They reported that over 80% of H. pylori isolates contained Le\(x\) and/or Le\(y\) antigens, while our results showed that only 70 and 60% of H. pylori isolates reacted with anti-Le\(x\) and/or anti-Le\(y\) MAbs, respectively, as assayed by immunoblotting and ELISA. This discrepancy may originate from differences in the assay techniques for determining antibody titers or in the way the bacteria were cultivated.

Previously, the microbial expression of mammalian carbohydrate antigens was reported. Campylobacter jejuni LPS was shown to possess epitopes made up of glycosphingolipids of the ganglioside group (4). Furthermore, Streptococcus bovis expresses sialyl-Le\(x\) (11), and ova and adult worms of Schistosoma mansoni express Le\(x\) as an antigen (13). The mimicry was thought to contribute to the ability of the bacteria to escape the host immune response. Indeed, H. pylori LPS was shown previously to have low biological activities with respect to endotoxins (15, 16), neutrophil activation (18), and regulation of adhesion molecule expression (8). These low activities might be related not only to the fatty acid composition of lipid A but also to the mimicry of the host carbohydrate antigens, namely, the Lewis antigens. On the other hand, Lewis antigen expression by H. pylori has possibly led to autoimmune diseases against host cells expressing similar antigens (3).

DISCUSSION

Recently, Aspinall et al. reported that the O polysaccharides of LPSs from the H. pylori strains NCTC11637 (originally the same strain as ATCC 43504) and MO19 are structurally similar to the Lewis x and y blood group antigens, respectively (5–7). LPS from H. pylori strain P466 contains structurally similar portions of both the Lewis x and the Lewis y antigens (5). These antigens are also present in human mucosa (14). Furthermore, Simoons-Smit et al. (22) proposed that the typing of H. pylori would be possible by testing the reactivity of anti-Lewis antigen MAbs with these LPSs, and Wirth et al. (24) supported their proposal.

In this paper, we report the reactivities of several kinds of MAbs against Lewis antigens with the LPSs of 69 strains of H. pylori isolated from patients with gastroduodenal diseases by immunoblotting and ELISA. Based on the results, H. pylori LPS was classified into nine groups, without any apparent correlation with the status of the diseases. Specifically, we were able to demonstrate the extensive reactivities of anti-Le\(x\) and anti-Le\(y\) MAbs with H. pylori LPS compared to those of anti-Le\(a\) and anti-Le\(b\) MAbs, confirming results obtained previously by Appelmelk et al. (3), Simoons-Smit et al. (22), and Wirth et al. (24). They reported that over 80% of H. pylori isolates contained Le\(x\) and/or Le\(y\) antigens, while our results showed that only 70 and 60% of H. pylori isolates reacted with anti-Le\(x\) and/or anti-Le\(y\) MAbs, respectively, as assayed by immunoblotting and ELISA. This discrepancy may originate from differences in the assay techniques for determining antibody titers or in the way the bacteria were cultivated.

Previously, the microbial expression of mammalian carbohydrate antigens was reported. Campylobacter jejuni LPS was shown to possess epitopes made up of glycosphingolipids of the ganglioside group (4). Furthermore, Streptococcus bovis expresses sialyl-Le\(x\) (11), and ova and adult worms of Schistosoma mansoni express Le\(x\) as an antigen (13). The mimicry was thought to contribute to the ability of the bacteria to escape the host immune response. Indeed, H. pylori LPS was shown previously to have low biological activities with respect to endotoxins (15, 16), neutrophil activation (18), and regulation of adhesion molecule expression (8). These low activities might be related not only to the fatty acid composition of lipid A but also to the mimicry of the host carbohydrate antigens, namely, the Lewis antigens. On the other hand, Lewis antigen expression by H. pylori has possibly led to autoimmune diseases against host cells expressing similar antigens (3).

Recently, we measured the reactivity of H. pylori-infected
human serum with \textit{H. pylori} LPS (25). The results indicated that the polysaccharide regions of \textit{H. pylori} are immunogenic in humans. The results also indicated that the polysaccharide regions of \textit{H. pylori} strains isolated from tumors of gastric cancer patients showed significantly lower immunogenicity compared to those isolated from gastroduodenal disease patients. Based on these results and the data presented in this study, we conclude that the antigenicity of \textit{H. pylori} LPS in humans is independent of the Lewis antigen content of the sample. It will be important to better define the structure of the polysaccharide regions of \textit{H. pylori} LPS that reacts with \textit{H. pylori}-infected human serum, and indeed, work in this direction is already in progress.

ACKNOWLEDGMENTS

We are grateful to T. Ishioka and O. Urayama of Akita University School of Medicine for providing sera from normal individuals and patients suffering from gastric diseases.

REFERENCES

