Intramuscular Immunization of Mice with a Live-Attenuated Triple Mutant of Yersinia pestis CO92 Induces Robust Humoral and Cell-Mediated Immunity To Completely Protect Animals against Pneumonic Plague

Bethany L. Tiner,a Jian Sha,a,b Duraisamy Ponnusamy,a Wallace B. Baze,c Eric C. Fitts,a Vsevolod L. Popov,d Christina J. van Lier,a Tatiana E. Erova,a Ashok K. Chopra,a,b,e,f

Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USAa; Department of Veterinary Sciences, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USAc; Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USAe; Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USAa; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USAf

Earlier, we showed that the Δlpp ΔmsbB Δail triple mutant of Yersinia pestis CO92 with deleted genes encoding Braun lipoprotein (Lpp), an acyltransferase (MsbB), and the attachment invasion locus (Ail), respectively, was avirulent in a mouse model of pneumonic plague. In this study, we further evaluated the immunogenic potential of the Δlpp ΔmsbB Δail triple mutant and its derivative by different routes of vaccination. Mice were immunized via the subcutaneous (s.c.) or the intramuscular (i.m.) route with two doses (2 × 10⁶ CFU/dose) of the above-mentioned triple mutant with 100% survivability of the animals. Upon subsequent pneumonic challenge with 70 to 92 50% lethal doses (LD₅₀) of wild-type (WT) strain CO92, all of the mice survived when immunization occurred by the i.m. route. Since Ail has virulence and immunogenic potential, a mutated version of Ail devoid of its virulence properties was created, and the genetically modified ail replaced the native ail gene on the chromosome of the Δlpp ΔmsbB double mutant, creating a Δlpp ΔmsbB::ailL2 vaccine strain. This newly generated mutant was attenuated similarly to the Δlpp ΔmsbB Δail triple mutant when administered by the i.m. route and provided 100% protection to animals against subsequent pneumonic challenge. Not only were the two above-mentioned mutants cleared rapidly from the initial i.m. site of injection in animals with no histopathological lesions, the immunized mice did not exhibit any disease symptoms during immunization or after subsequent exposure to WT CO92. These two mutants triggered balanced Th1- and Th2-based antibody responses and cell-mediated immunity. A substantial increase in interleukin-17 (IL-17) from the T cells of vaccinated mice, a cytokine of the Th17 cells, further augmented their vaccine potential. Thus, the Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutants represent excellent vaccine candidates for plague, with the latter mutant still retaining Ail immunogenicity but with a much diminished virulence potential.

Yersinia pestis is the causative agent of plague (1), and there has been a rise in the number of plague cases globally in recent years possibly due to climate changes and shifting of the rodent carrier range (2). The organism is classified as a tier 1 select agent (3–5), and the progression of septicemic and pneumonic forms of plague is very rapidly fatal after the first appearance of symptoms (4, 6–8). Alarmingly, antibiotic-resistant strains of Y. pestis have been isolated from plague patients and also have been engineered for bioweaponization (4). Therefore, vaccination is the optimal strategy for human protection against this deadly disease; however, there are currently no Food and Drug Administration (FDA)-licensed plague vaccines available in the United States (9–11).

Although a heat-killed plague vaccine composed of the Y. pestis 195/P strain was in use in the United States until 1999, the production of this vaccine was discontinued because of its effectiveness only against the bubonic plague and not the pneumonic form and also because it was highly reactogenic in humans (12, 13). Various live-attenuated Y. pestis EV76 vaccine strains, which lack the pigmentation locus (pgm) required for iron acquisition, provide protection against bubonic and pneumonic plague and are being used in some parts of the world where plague is endemic (9). However, these EV76-based vaccines are not genetically uniform and are also highly reactogenic (14); hence, they do not meet the standards for FDA approval. In addition, the Δpgm mutants of Y. pestis (e.g., the KIM/D27 strain) may not be safe because of a reported case of fatal infection in an individual with hemochromatosis (15, 16).

In an effort to search for a new live-attenuated plague vaccine, we recently constructed a Δlpp ΔmsbB Δail triple mutant, with deleted genes encoding Braun lipoprotein (Lpp), an acetyltransferase (MsbB), and the attachment invasion locus (Ail) (17). Lpp

Received 26 August 2015 Returned for modification 11 September 2015 Accepted 3 October 2015 Accepted manuscript posted online 7 October 2015 Citation Tiner BL, Sha J, Ponnusamy D, Baze WB, Fitts EC, Popov VL, van Lier CJ, Erova TE, Chopra AK. 2015. Intramuscular immunization of mice with a live-attenuated triple mutant of Yersinia pestis CO92 induces robust humoral and cell-mediated immunity to completely protect animals against pneumonic plague. Clin Vaccine Immunol 22:1255–1268. doi:10.1128/CVI.00499-15. Editor: D. W. Pascual Address correspondence to Jian Sha, jsha@utmb.edu, or Ashok K. Chopra, achopra@utmb.edu. Supplemental material for this article may be found at http://dx.doi.org/10.1128/CVI.00499-15.

Copyright © 2015, American Society for Microbiology. All Rights Reserved.
activates Toll-like receptor 2, which leads to the production of proinflammatory cytokines and septic shock (18-21). On the other hand, MsbB modifies lipopolysaccharide (LPS) by adding lauric acid to the lipid A moiety, resulting in the increased biological potency of LPS (22-27). Ail is an ~17-kDa outer membrane protein with four extracellular loops, and loop 2 (L2) has been reported to be mainly responsible for Ail-mediated bacterial serum resistance and adherence to/invasion of the host cells (17, 28-36).

In this study, to further characterize the vaccine potential of the \(\Delta lpp \) \(\Delta msbB \) \(\Delta ail \) triple mutant, we evaluated its effectiveness when administered by the most common subcutaneous (s.c.) or the intramuscular (i.m.) route (37). Since Ail also has immunogenic potential in addition to its role as a virulence factor (38), we aimed at mutating the corresponding nucleotides in the \(ail \) gene that encode the essential amino acid residues required for virulence of L2 instead of deleting the whole \(ail \) gene from the \(\Delta lpp \) \(\Delta msbB \) strain of CO92 (36, 39). Indeed, the generated \(\Delta lpp \) \(\Delta msbB::ail \) mutant was severely impaired in Ail-associated virulence traits, e.g., serum resistance, host cell adhesion, and invasion. Most importantly, immunization of mice with the \(\Delta lpp \) \(\Delta msbB::ail \) mutant via the i.m. or the s.c. route elicited robust humoral and cellular immune responses, which conferred up to 100% protection in animals at a high pneumonic challenge of 70 to 92 50% lethal doses (LD\(_{50}\)) of wild-type (WT) CO92. Therefore, \(\Delta lpp \) \(\Delta msbB::ail \) and \(\Delta lpp \) \(\Delta msbB::ail \) mutants represent excellent plague vaccine candidates. In addition, such vaccines can be effectively administered via different routes, providing flexibility during immunization.

MATERIALS AND METHODS

Bacterial strains and plasmids. All bacterial strains and plasmids used in this study are listed in Table S1 in the supplemental material. \(Y. \) \(pestis \) and recombinant \(E. \) \(coli \) strains were grown as described by us previously (17, 27, 40, 41). All of our studies were performed in a tier 1 select agent facility within the Galveston National Laboratory (GNL), University of Texas Medical Branch (UTMB). The molecular biological reagents were purchased from Promega (Madison, WI), Clontech (Palo Alto, CA), and Qiagen, Inc. (Valencia, CA). HeLa cells were obtained from the American Type Culture Collection (ATCC) (Manassas, VA).

Mutation of the \(ail \) gene. Four amino acid residues (lysine-88, aspartate-91, aspartate-93, and phenyalanine-94) in L2 of Ail were changed to alanine by using PCRs. Briefly, the primer pairs Aup5-mAup3 and Aup5-Dn3 (see Table S2) were used to amplify the mutated \(ail \) gene. The mutated \(ail \) gene, designated \(ailL2 \), and its upstream and downstream flanking DNA sequences were joined together by PCR with the primer pair Up5-Adn3 (see Table S2). The above-mentioned PCR product was subsequently cloned into the suicide vector pDMS197-\(il \) (42), which generated the recombinant plasmid pDMS197-\(ilL2 \) (see Table S1 in the supplemental material).

Previously, we constructed an intermediate \(lpp, msbB, \) and \(ail \) triple gene deletion mutant (\(\Delta lpp \) \(\Delta msbB::ail \)-Km) of \(Y. \) \(pestis \) CO92 (see Table S1 in the supplemental material) that carried a kanamycin resistance (Km\(^\prime\)) \(\Delta msbB::ail \)-Km gene cassette (43) in place of the \(ail \) gene (17). Therefore, the recombinant suicide vector pDMS197-\(ilL2 \) strain (Gene Pulser Xcell; Bio-Rad, Hercules, CA) (17) was transformed with the construct. The transformants that were sensitive to kanamycin (Km\(^\prime\)) and resistant to 5% sucrose were picked up and screened by PCR with the primer pair Up5-Dn3 (see Table S2 in the supplemental material) (17) to ensure genomic replacement of the Km\(^\prime\) cassette with the \(ailL2 \) gene. Genomic DNA sequencing with the primer SqAil (see Table S2) (17) was used to confirm replacement and to ensure no alteration in the wild type of the strain. The \(ailL2 \) strain was used to further confirm replacement and to ensure no alteration in the \(ailL2 \) surrounding regions in the \(\Delta lpp \) \(\Delta msbB::ail \) mutant compared to those of the native \(ail \) gene in the \(\Delta lpp \) \(\Delta msbB::ail \) double mutant.

Production of \(AilL2 \) and Pla protease in the \(\Delta lpp \) \(\Delta msbB::ail \) mutant of \(Y. \) \(pestis \) CO92. The \(\Delta lpp \) \(\Delta msbB::ail \) and \(\Delta lpp \) \(\Delta msbB::ail \) mutants were grown overnight in heart infusion broth (HIB) at 28°C with shaking at 180 rpm, and the resulting bacterial cells (representing similar CFU) were dissolved in SDS-PAGE sample buffer. An aliquot of the samples was then resolved by SDS-PAGE, and the Western blots were analyzed with polyclonal antibodies to Ail and the plasminogen activator (Pla) (38). As a loading control, the presence of Dnak in the bacterial pellets was assessed by using anti-Dnak monoclonal antibodies (Enzo, Farmingdale, NY).

Serum resistance, adherence, and invasion of \(Y. \) \(pestis \) CO92 mutants. Various \(Y. \) \(pestis \) strains were grown overnight, harvested, and then diluted in phosphate-buffered saline (PBS) to an optical density at 600 nm (\(OD_{600} \)) of 0.2 (\(1 \times 10^6 \) CFU/ml). A 50-\(\mu \)l volume of the diluted bacteria (\(5 \times 10^6 \) CFU) was mixed with either 200 \(\mu \)l of undiluted normal (unheated) or heat-inactivated (56°C/30 min) human serum (Sigma-Aldrich, St. Louis, MO). After incubation at 37°C for 2 h, the number of surviving bacteria (CFU) in each sample was determined by serial dilutions and by plating on sheep blood agar (SBA) plates (17, 27). The percentage of bacterial survival was calculated by dividing the average CFU in the samples incubated in normal serum by the average CFU in the samples incubated in the heat-inactivated serum and multiplying by 100.

Human HeLa cervical epithelial cells (\(4 \times 10^5 \)) were seeded in 12-well plates as described previously (17) and were infected with various mutants of \(Y. \) \(pestis \) CO92 at a multiplicity of infection (MOI) of 100. The plates were centrifuged at 1,200 rpm for 10 min to facilitate bacterial contact with the HeLA cells. After 2 h of incubation, the adherence and invasion of bacteria were evaluated as we recently described (17, 44).

Animal studies. Six- to eight-week-old female Swiss-Webster mice (17 to 20 g) were purchased from Taconic Laboratories (Germantown, NY). All of the animal studies were performed in the Animal Biosafety Level 3 (ABSL-3) facility under an approved Institutional Animal Care and Use Committee protocol.

(i) Immunization. Mice were immunized by the i.m. route with one or two doses of \(2 \times 10^5 \) CFU/100 \(\mu \)l of the \(\Delta lpp \) \(\Delta msbB::ail \) triple mutant or the \(\Delta lpp \) \(\Delta msbB::ail \) mutant. The mutants were administered in a 50-\(\mu \)l volume each in the hind legs. When two doses of each vaccine strain were administered, they were injected 21 days apart (on days 0 and 21). Mice receiving only one dose were injected on the same day when the other animals received their second vaccine dose (on day 21). Another set of mice was immunized by the s.c. route with two doses of \(2 \times 10^5 \) CFU/100 \(\mu \)l of the \(\Delta lpp \) \(\Delta msbB::ail \) triple mutant or the \(\Delta lpp \) \(\Delta msbB::ail \) mutant strain. Subcutaneous doses were injected at one site 21 days apart (on days 0 and 21). Mice were assessed for morbidity and/or mortality over the duration of vaccination.

(ii) Antibody responses. Blood was collected by the retro-orbital route from vaccinated mice 2 weeks after each immunization (on days 14 and 35). Reimmunization blood samples served as a control. Serum samples were separated and filtered by using Costar 0.1-\(\mu \)m centrifuge tube filters (Corning Inc., Corning, NY). Enzyme-linked immunosorbent assay (ELISA) plates were coated with the F1-V fusion protein (1 \(\mu \)g/ml; BEI Resources, Manassas, VA) (17, 27, 41). Total IgG and antibody isotypes against F1-V (capsular antigen F1 and a type 3 secretion system [T3SS] component low-calcium response V antigen [LcrV]) in the serum samples (1:5 serially diluted) of animals immunized with the \(\Delta lpp \) \(\Delta msbB::ail \) triple mutant or the \(\Delta lpp \) \(\Delta msbB::ail \) mutant were then determined as we previously described (45).

(iii) Challenge. Twenty-one days after the last immunization (day 42), the immunized mice were anesthetized with a mixture of xylazine-ketamine and then exposed by the intranasal (i.n.) route to 3.5 \(\times 10^9 \) to 4.6 \(\times 10^6 \) CFU/40 \(\mu \)l (70 to 92 LD\(_{50}\)) of the bioluminescent WT \(Y. \) \(pestis \) CO92 luc2 strain (WT CO92 luc2), which contains the luciferase operon (luc or
adding to each well, and the cells were harvested 16 h later using a semi-automated sample harvester (FilterMate Harvester; PerkinElmer, Wall-tham, MA) followed by measurement of radioactive counts (TopCount NXT, PerkinElmer).

Statistical analysis. For a majority of the experiments, one-way analysis of variance (ANOVA) was used with the Tukey’s *post hoc* test for data analysis except for the serum resistance assay, which was examined using the Student *t* test. We used Kaplan-Meier survival estimates for animal studies, and *P* values of ≤0.05 were considered significant for all of the statistical tests used. The standard deviations were derived from three independently performed experiments with three replicates per experiment for *in vitro* assays.

RESULTS

Evaluation of the protection provided by intramuscular immunization of mice with the Δlpp ΔmsbB Δail triple mutant in a pneumonic plague model. Mice were i.m. vaccinated with one or two doses of the Δlpp ΔmsbB Δail triple mutant at 2 × 10^5 CFU/dose. As shown in Fig. 1A, similar levels of total IgG antibody titers (1:15,625) to those of F1-V were noted when animals were vaccinated with either one or two doses. In addition, mice developed balanced Th1 and Th2 responses based on IgG1, IgG2a, and IgG2b antibody titers to F1-V (1:15,625) despite the number of vaccine doses administered (Fig. 1A).

No disease symptoms were observed in mice during the above immunizations. All of the mice immunized with two doses of the triple mutant survived the i.n. challenge with 92 LD₅₀ of the WT CO92 *luc2* strain when administered on day 21 after vaccination (Fig. 1B). While slightly lower, a still impressive level of protection (78%) was achieved when animals were vaccinated with only one dose of the triple mutant, and this protection was not statistically different than that of the group of animals receiving two doses of the vaccine (Fig. 1B). In contrast, all naive mice succumbed to infection by day 4 p.i., and they exhibited clinical symptoms such as ruffled fur, hunched back, and lethargy and they were unable to groom and tended to huddle together.

The infected mice mentioned above were also imaged on day 3 p.i. to monitor the progression of infection. As shown in Fig. 1C, WT CO92 *luc2* bacilli disseminated from the lungs to the whole body in 7 out of 8 naive animals, and they all eventually succumbed to infection. On the contrary, the animals receiving one immunization dose of the Δlpp ΔmsbB Δail triple mutant, only 2/9 mice were positive for bioluminescence on day 3 postchallenge (Fig. 1C). These two animals succumbed to infection, resulting in an overall 78% survival rate (Fig. 1B). It was also noted that the bioluminescent strain was confined to the initial infection site (lungs) in those two bioluminescence-positive animals compared to results for the naive but infected control animals (Fig. 1C).

In the immunized group of mice receiving two doses of the vaccine, none of the animals were positive for bioluminescence after pneumonic challenge (Fig. 1C), with 100% of the animals surviving (Fig. 1B). No clinical symptoms of the disease were apparent in mice receiving two doses of the vaccine and then subsequently challenged. Since none of the surviving animals became bioluminescence positive by day 7 (0/10), these data indicated a clearance of the WT CO92 *luc2* strain by day 7 (Fig. 1C). To confirm, no bacilli were detected in the organs (lungs, liver, and the spleen) of the survivors on day 54 after WT CO92 *luc2* challenge based on bacterial enumeration by plating (data not shown).

In vitro characterization of the Δlpp ΔmsbB::ailL2 mutant of *Y. pestis* CO92. The replacement of native *ail* with the *ailL2* gene
in the Δlpp ΔmsbB double mutant of *Y. pestis* CO92 was confirmed by PCR analysis. Further genomic DNA sequencing revealed no unexpected alterations in the *ailL2* gene or in its adjacent regions on the chromosome compared to that of its parental strain (data not shown). In addition, we examined the expression of the *ailL2* gene using Western blotting. As shown in Fig. 2A, Ail-specific antibodies detected the correct size protein with essentially similar intensities in all of the examined strains except for the Δlpp ΔmsbB Δail triple mutant. Importantly, the expression levels of the *pla* gene were also similar across all strains examined, indicating that neither deletion of the native *ail* gene nor replacement of it with the *ailL2* gene in the Δlpp ΔmsbB double mutant affected production of the other tested bacterial membrane protein, i.e., Pla (Fig. 2A).

Due to the ability of Ail to impart serum resistance to *Y. pestis* (17, 28, 31–33), the WT CO92 and its Δlpp ΔmsbB double, Δlpp ΔmsbB Δail triple, and Δlpp ΔmsbB::ailL2 mutants were evaluated for their ability to be killed by the complement cascade. Although all of the tested strains survived similarly in heat-inactivated serum samples after 2 h of incubation with CFU in the range of 1.6 to 2.0 × 10^7/ml, less than 10% of the Δlpp ΔmsbB Δail triple mutant isolates survived when exposed to the normal serum (Fig. 2B). On the other hand, WT CO92 and its Δlpp ΔmsbB double mutant strain exhibited slightly better or similar survival rates in the normal serum compared to those in the heat-inactivated serum. The survival rate of the Δlpp ΔmsbB::ailL2 mutant strain was ~35% in the normal serum, and as expected, it did not reach the level of the Δlpp ΔmsbB double mutant (Fig. 2B).

Since Ail also functions in the adherence and subsequent invasion of bacteria in the host cells, these virulence phenotypes of WT CO92 and their various mutants were examined in HeLa cells. The adherence (Fig. 2C, panel I) and invasive abilities (Fig. 2C, panel II) of the Δlpp ΔmsbB Δail triple mutant were significantly decreased compared to those of the WT CO92 and its Δlpp ΔmsbB double mutant. The Δlpp ΔmsbB::ailL2 mutant behaved very similarly to the Δlpp ΔmsbB Δail triple mutant in terms of its ability to adhere to and invade HeLa cells.

Evaluation of protection provided by intramuscular or subcutaneous immunization of mice with the Δlpp ΔmsbB Δail triple mutant or the Δlpp ΔmsbB::ailL2 mutant in a pneumonic plague model. Since our data (presented in Fig. 1B) indicated that two doses of immunization in mice provided optimal protection against WT CO92 challenge, we used the same vaccination regi-
men for the i.m. and s.c. routes of immunization and compared the protection conferred by the \(\Delta lpp \Delta msbB:aiL2 \) mutant with that of the \(\Delta lpp \Delta msbB \Delta ail \) triple mutant. Irrespective of the route of immunization of either of the two mutant strains, 100% survivability of animals was noted with no clinical symptoms. All of the mice that were immunized intramuscularly were protected against a lethal pneumonic challenge at a dose of \(3.5 \times 10^4 \) CFU (70 LD\(_{50}\)) of the WT CO92 luc2 strain (Fig. 3A), while 67% and 88% protection was achieved in mice subcutaneously immunized with the \(\Delta lpp \Delta msbB:aiL2 \) mutant or the \(\Delta lpp \Delta msbB \Delta ail \) mutant, respectively (Fig. 3B). Although the level of protection provided by the s.c. route of vaccination did not reach the same level as noted for the i.m. route of immunization (Fig. 3A), the difference in protection afforded by the two mutants was statistically insignificant. All naive and unimmunized mice succumbed to infection by 4 days after challenge with WT CO92 luc2 (Fig. 3A and B).

The bioluminescence images further showed that the organism disseminated from the lungs to the whole body of all naive but infected control mice (10/10) by day 3 p.i. (Fig. 3C to I). Only one animal from the \(\Delta lpp \Delta msbB \Delta ail \) i.m. immunized group was positive for bioluminescence, and the infection was confined to the throat region (Fig. 3C, panel II). However, the infection cleared from this animal by day 7 p.i. and, hence, was not fatal. In the s.c. immunized group of mice postchallenge, one animal from each of the mutant-immunized groups was positive for bioluminescence on day 3 p.i. (Fig. 3C, panel III), albeit only at the original infection site of the lungs; these two mice eventually succumbed to infection by day 4 to 5 p.i. (Fig. 3B). Surprisingly, 2 additional mice that were initially negative for bioluminescence on day 3 p.i. in the \(\Delta lpp \Delta msbB:aiL2 \) mutant s.c. immunized group also died by day 5 to 6 p.i. Upon necropsy, the death of these two mice was confirmed to be due to \(Y. \) \(\text{pestis} \) infection, suggesting that the level of bioluminescence in these animals was below the threshold of detection when imaged on day 3 [46]. However, by day 7 p.i., none of the remaining mice, regardless of the mutant and route used for immunization, were positive for bioluminescence, and they were healthy throughout the experiment. Importantly, 54 days after WT CO92 luc2 challenge, organs (lungs, livers, and spleens) harvested from three randomly selected survivors of each group (immunized via either the i.m. or the s.c. route) were free of the bacilli as evaluated by plate counting (data not shown).

To gauge the immunogenicity of the vaccine strains via different routes of immunization, serum samples were collected from all mice 14 days after each immunization. We noted a boost in antibody titers between the first and the second doses when vaccination was performed via the s.c. route. However, this phenomenon was not observed via the i.m. route of immunization, as the

in normal serum over the heat-inactivated serum was plotted. \(P \) values shown are based on one-way ANOVA. **, \(P < 0.005 \) compared to WT CO92 and the \(\Delta lpp \Delta msbB \) double mutant. *, Statistical significance (\(P < 0.05 \)) between the two indicated groups. (C) HeLa cells were infected at an MOI of 100 with various \(Y. \) \(\text{pestis} \) strains. After 2 h of incubation, the host cells were gently washed and the adherent bacteria were collected, and the percentage of adhesion (I) was calculated. In another set of wells, the gentamicin protection assay was followed and the percentage of invasive bacteria (II) was calculated. \(P \) values shown are based on one-way ANOVA. **, \(P < 0.001 \) compared to both WT CO92 and the \(\Delta lpp \Delta msbB \) mutant. The arithmetic means \(\pm \) standard deviations are plotted.
FIG 3 Immunity conferred by the \(\Delta lpp \Delta msbB \Delta ail \) and the \(\Delta lpp \Delta msbB:ailL2 \) mutants to mice via intramuscular and subcutaneous routes of immunization. Mice (\(n = 8 \) to 10 per group) were immunized intramuscularly (A) or subcutaneously (B) with 2 doses of \(2 \times 10^6 \) CFU/100 \(\mu l \) of the \(\Delta lpp \Delta msbB \Delta ail \) triple mutant or the \(\Delta lpp \Delta msbB:ailL2 \) mutant on days 0 and 21. Mice were challenged intranasally on day 42 with \(3.5 \times 10^4 \) CFU (70 LD\(_{50}\); 1 LD\(_{50}\) = 500 CFU) of the WT \(Y. pestis \) CO92 luc2 strain. Naive control, infected naive mice. The \(P \) values were in comparison to the naive control and were based on Kaplan-Meier curve analysis. (C) The infected mice (I, naive; II, i.m. immunized; and III, s.c. immunized) were imaged on days 3 and 7 postchallenge for bioluminescence, and the scale within the figure ranged from most intense (red) to least intense (violet).
peak antibody titers were achieved after only one vaccine dose (data not shown). The two above-mentioned mutants triggered higher levels of antibody responses (IgG titers of 1:46,875) to the F1-V antigen when vaccination occurred via the i.m. route compared to the s.c. route of immunization, which showed IgG titers of 1:18,000 (Fig. 4A). Balanced Th1- and Th2-based IgG1, IgG2a, and IgG2b antibody responses to F1-V were observed irrespective of the route of immunization employed (i.e., i.m. versus s.c.) (Fig. 4B). The only exception was that the animals immunized with the Δlpp ΔmsbB:ailL2 mutant by the s.c. route had significantly higher IgG1 titers than IgG2a titers, favoring a Th2 response (Fig. 4B).

Histopathological analysis of mouse tissues after intramuscular vaccination with the Δlpp ΔmsbB Δail triple mutant or the Δlpp ΔmsbB:ailL2 mutant and after exposure to WT Y. pestis CO92 in a pneumonic plague model. Prior to WT CO92 challenge and after two doses of vaccination, organs (muscles, lungs, livers, and spleens) were harvested from mice (n = 2) in each group for histopathological analyses. Muscles from mice immunized with the Δlpp ΔmsbB:ailL2 mutant were within the normal limits histopathologically and were similar to the muscles obtained from naive, unimmunized mice (Fig. 5). Muscles from mice immunized with the Δlpp ΔmsbB Δail triple mutant were also within the normal limits except for mild focal inflammation (Fig. 5). Irrespective of the two above-mentioned mutants used for immunization, the lungs, livers, and spleens of animals did not exhibit any abnormal histopathologies and were comparable to the organs of naive, unimmunized mice (Fig. 5).

As all i.m. immunized animals survived exposure to 70 LD₅₀ of the WT CO92 luc2 strain (Fig. 3A), organs (lungs, livers, and spleens) from 3 of these immunized mice were excised on day 54 p.i. to examine histopathological lesions and bacterial clearance. All of the naive mice succumbed to infection, and organs from three of them were harvested at time of death. In the lungs, all of the WT CO92-infected, unimmunized control mice had mild-to-moderate neutrophilic inflammation (see Fig. S1, arrow, in the supplemental material), present bacteria (arrowhead), and mild and diffused congestion. Also, the alveoli of these mice had a moderate level of hemorrhage with few alveolar spaces observed (see Fig. S1 in the supplemental material). All of the livers from WT CO92-infected, unimmunized mice had bacteria, some necrosis, and neutrophilic infiltration (see Fig. S1, arrow). All of the spleens of WT CO92-infected, unimmunized mice had bacteria (see Fig. S1, arrowhead), mild lymphoid depletion of the marginal zone in the white pulp (asterisk), and mild-to-marked diffuse rarefaction or loss of normal cell population of the red pulp with fibrin present (see Fig. S1). On the contrary, all of the tissues from mice immunized with one of the two mutants (the Δlpp ΔmsbB Δail triple or the Δlpp ΔmsbB:ailL2) and then challenged with WT CO92 exhibited histopathologies within normal limits (see Fig. S1) and were similar to tissues from uninjected naive animals (Fig. 5).

When comparing histopathological changes, essentially similar data were obtained when immunization occurred via the s.c. route with either of the two mutants and after challenge of the immunized mice by the pneumonic route with WT CO92 (data not shown).

Progression of infection and histopathological lesions in mice intramuscularly infected with the Δlpp ΔmsbB Δail triple mutant or the Δlpp ΔmsbB:ailL2 mutant of Y. pestis CO92. Mice (n = 3) were either challenged with 2 × 10⁶ CFU of either the WT CO92-lux, the Δlpp ΔmsbB Δail-lux, or the Δlpp ΔmsbB::ailL2-lux strain. Using IVIS, animals were imaged at 0, 12, 24, 36, and 48 h p.i. At 0 h, all mice were positive for bioluminescence that was localized to the injection site in the muscle (Fig. 6A, panel I). By 12 h p.i., all mice infected with the Δlpp ΔmsbB Δail-lux or the Δlpp ΔmsbB::ailL2-lux strain were positive, but the intensity of bioluminescence in the muscle had decreased compared to 0 h (Fig. 6A, panel II). From 24 to 48 h p.i., none of the mice infected with the Δlpp ΔmsbB Δail-lux or the Δlpp ΔmsbB::ailL2-lux strain were positive for bioluminescence (Fig. 6A, panels III to V). However, mice infected with the WT CO92-lux strain had increased bioluminescence localized to the muscle at 12 h (Fig. 6A, panel II), and further dissemination of bacteria was observed in 1/3 of the mice at 24 h p.i. (Fig. 6A, panel III). This dissemination pattern became more prominent and was noted in the other two animals at 36 h p.i. (Fig. 6A, panel IV). At 48 h p.i., the level of bioluminescence was reduced in 1/3 of the mice (Fig. 6A, panels III to V). This is
attributed to the death of this animal, which causes bioluminescence to decrease due to diminished oxygen levels and temperature (46).

To further examine the bacterial load in mice, after in vivo imaging at 48 h p.i., all of the animals were sacrificed, and the organs (muscles, lungs, livers, and spleens) were harvested and subjected to bacterial count determination. As shown in Fig. 6B, mice infected with the WT CO92 had a high bacterial load in each of these organs (range from 8×10^4 to 8.7×10^5 CFU per organ or per gram of muscle) (Fig. 6B). The animal with a relatively lower bacterial load in various organs correspondingly exhibited weak bioluminescence at 36 and 48 h p.i. (Fig. 6A, panels IV and V), indicating bacterial counts to be below the threshold of bioluminescence detection for the WT CO92-lux strain during in vivo imaging.

All of the animals infected with the WT CO92-lux strain had severe plague symptoms and were on the verge of death. In contrast, mice infected with either the Δlpp ΔmsbB Δail-lux triple mutant or the Δlpp ΔmsbB:ailL2-lux mutant had minimal to no detectable bacterial load in any of the organs examined at 48 h p.i. (Fig. 6B). All of the tissues (muscle, liver, spleen, and lung) of WT CO92-infected animals had the presence of necrosis, hemorrhage, inflammation, edema, and bacteria (see Fig. S2 in the supplemental material). However, all the tissues from mice infected with the Δlpp ΔmsbB Δail-lux triple mutant or the Δlpp ΔmsbB:ailL2-lux mutant were within normal limits histopathologically (see Fig. S2).

Activation of T cells by the Δlpp ΔmsbB Δail triple mutant and the Δlpp ΔmsbB:ailL2 mutant of Y. pestis CO92 after intramuscular or subcutaneous immunization of mice. To investigate T-cell responses, mice were i.m. or s.c. infected/immunized with a 1×10^6 CFU dose of either KIM/D27, the Δlpp ΔmsbB Δail triple mutant, or the Δlpp ΔmsbB:ailL2 mutant strain. *Y. pestis* KIM/D27 is a pgm-locus-negative mutant with characteristics similar to the live-attenuated *Y. pestis* EV76 vaccine strain (51), and, thus, it served as an appropriate control. No clinical symptoms were observed in mice immunized with either the Δlpp ΔmsbB Δail triple mutant or the Δlpp ΔmsbB:ailL2 mutant strain. Although none of the KIM/D27-infected mice succumbed to infection at this low dose (1×10^6 CFU), they all had ruffled fur and were lethargic up to 7 days postimmunization. On day 21 p.i., T cells isolated from these mice were restimulated with the heat-killed WT *Y. pestis* CO92 ex vivo, and T-cell proliferation (in terms of cpm) and cytokine production were evaluated.

As shown in Fig. 7, except for the naive group, all pulsed T cells (black bars) proliferated robustly compared to their corresponding unpulsed controls (gray bars). In addition, T cells from mice immunized by either the i.m. or the s.c. route significantly proliferated compared to T cells isolated from naive mice. These data indicated successful priming and restimulation during the experiment. Importantly, T cells isolated from mice immunized intramuscularly by either the Δlpp ΔmsbB Δail triple mutant or the Δlpp ΔmsbB:ailL2 mutant robustly proliferated at comparable levels, which were significantly higher than those of T cells isolated from the KIM/D27-immunized mice (Fig. 7A). During s.c. immunization, the T cells from the KIM/D27-infected mice proliferated similarly to the T cells isolated from the Δlpp ΔmsbB Δail triple mutant- or the Δlpp ΔmsbB:ailL2 mutant-immunized mice (Fig. 7B).
Interestingly, the T-cell proliferation was significantly higher in mice immunized (by the s.c. route) with the /H9004 lpp/H9004 msbB/H9004ail triple mutant than it was in animals vaccinated with the /H9004 lpp/H9004 msbB::ailL2 mutant strain (Fig. 7B).

Supernatants collected from the above-mentioned T cells were then assessed for cytokine production by using a Bio-Rad mouse 6-plex assay kit. Robust cytokine/chemokine production (i.e., gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], IL-1β, IL-10, and IL-17A) was observed in T cells obtained from mice immunized intramuscularly across all of the above-mentioned Y. pestis mutant strains tested in response to restimulation with the heat-killed Y. pestis CO92 (Fig. 8). A similar trend was noted for the production of IFN-γ, TNF-α, IL-1β, IL-6, and IL-10 in T cells isolated from mice vaccinated subcutaneously with the above-mentioned mutant strains, except for levels of IL-17A production, which were similar in pulsed and unpulsed T cells (data not shown). Overall, cytokines were either very low or undetectable from T cells isolated from unimmunized, naive mice (data not shown).

DISCUSSION

The resurgence of plague in many parts of the world, the existence of natural or intentionally generated antibiotic-resistant strains, and the lack of a current FDA-approved plague vaccine in the United States necessitate the development of an effective vaccine.

Currently, the most promising clinical trials are testing recombinant subunit vaccines consisting of F1 and LcrV antigens. These F1-V-based vaccines are efficacious against pneumonic plague in rodents and macaques (52–56); however, protection was variable in African green monkeys (9, 12, 55, 57, 58). Further, F1 capsular antigen is dispensable for virulence (59, 60) and the LcrV amino acid sequence has diverged among Y. pestis strains (1, 61). Therefore, the F1-V-based subunit vaccines most likely will not provide optimal protection across all plague-causing strains in humans, specifically those that have been intentionally modified for possible use in terrorist attacks (62, 63).

The live-attenuated vaccines that promote humoral and cell-mediated immune responses may represent a better option for overcoming the above-mentioned shortcomings of the subunit vaccines (9, 12). Recently, our laboratory and others reported the development of mutant strains of Y. pestis that have shown vaccine potential (17, 27, 41). For example, a single dose of our /H9004 lpp/H9004 msbB/H9004ail triple mutant conferred dose-dependent protection in mice against developing subsequent pneumonic plague when immunization occurred by the intranasal route (17). Our data showed up to a 3.4 × 10^6 CFU dose of this vaccine strain was unable to kill mice, and the animals developed balanced Th1 and Th2 antibody responses, which provided subsequent protection (70%) to mice when challenged with 28 LD50 of WT CO92 (17).

Although the experiments were not performed in parallel, our intramuscular immunization data with a single dose of this mutant (Fig. 1) provided comparable protection (78%) in mice but
under a much more stringent challenge dose of WT CO92 (92 LD_{50}). These data suggested that vaccination by the i.m. route might be superior to the i.n. route of immunization with this triple mutant in a mouse model.

It is generally believed that intranasal immunization has an advantage, as it results in the development of mucosal immunity and the systemic immune response. However, during mucosal immunization, the vaccine must be able to penetrate the epithelial barrier and to survive luminal host innate defenses. On the contrary, intramuscular immunization enables the vaccine to easily access blood vessels to reach blood circulation to directly stimulate the immune system (64). However, irrespective of the vaccination route, the Δlpp ΔmsbB Δail triple mutant (at doses of 2 × 10^6 to 3.4 × 10^6 CFU) was unable to confer 100% protection to immunized mice in a single dose against developing subsequent pneumonic plague (17) (Fig. 1). Since Ail also has immunogenic potential in addition to its role as a virulence factor (38), we generated the Δlpp ΔmsbB::ailL2 mutant strain with the intention of further improving its immunogenicity.

The Ail protein has eight transmembrane domains with four extracellular loops and eight amino acid residues in loops 2 and 3 of Yersinia enterocolitica, which are responsible for imparting serum resistance and the microbe’s ability to adhere to/invoke host cells (39). Likewise, 3 amino acid residues within loop 1 have been predicted to play an important role in bacterial adherence (36). Loop 2 of Ail in Y. enterocolitica and that in Y. pestis share 70% homology, and mutations in 4 amino acid residues resulted in drastically altering the ability of the Δlpp ΔmsbB::ailL2 mutant to

FIG 7 T-cell proliferation. Mice were immunized by the i.m. (A) or the s.c. (B) route with 1 × 10^6 CFU of Y. pestis KIM/D27, the Δlpp ΔmsbB Δail triple mutant, or the Δlpp ΔmsbB::ailL2 mutant. On day 21 p.i., T cells were isolated separately from the spleens of 5 mice in each immunized group or from 3 mice from the naive control. The isolated T cells were cocultured with γ-irradiated splenocytes from naive mice (severed as antigen-presenting cells [APCs]) pulsed or unpulsed with heat-killed WT CO92. T-cell proliferation was assessed by measuring the incorporation of [3H]thymidine at day 3 of coculturing with the APCs. The arithmetic means ± standard deviations are plotted. Data were analyzed by using the Bonferroni correction with a one-way ANOVA. Comparisons were made between the naive pulsed groups and the immunized pulsed groups or between the groups indicated by a horizontal line. *, P < 0.01; **, P < 0.005; ***, P < 0.001; ****, P < 0.0001.

Tiner et al.
adhere to, invade, and/or exhibit serum resistance compared to that of WT CO92 and other tested mutants (Fig. 2).

A slight increase in the serum resistance of the Δlpp ΔmsbB::ailL2 mutant compared to that of the Δlpp ΔmsbB Δail triple mutant was possibly related to the contribution of other Ail loops in serum resistance that were intact in the Δlpp ΔmsbB::ailL2 mutant. Indeed loops 1 and 3 of Ail in Y. pestis are important for adherence and invasion, with up to 50% reduction in the above-mentioned phenotypes when these two loops were mutated (65). However, similar levels of adherence and invasion of the Δlpp ΔmsbB::ailL2 and the Δlpp ΔmsbB Δail triple mutants in HeLa cells signified the important role of loop 2 in Ail-associated virulence phenotypes and also suggested that a conformational association between various loops of Ail might be necessary for efficient bacterial adherence to and invasion of the host cells.

Comparable levels of AilL2 production in the Δlpp ΔmsbB::ailL2 mutant and its parental Δlpp ΔmsbB strain (Fig. 2A) and diminished virulence of Ail in the Δlpp ΔmsbB::ailL2 mutant (Fig. 2B and C) indicated successful creation of a potentially better vaccine candidate than the Δlpp ΔmsbB Δail triple mutant. In addition, a partial restoration of serum resistance in this Δlpp ΔmsbB::ailL2 mutant (Fig. 2B) might lead to a better recognition by the host immune system. However, our data indicated that the Δlpp ΔmsbB Δail triple mutant and the Δlpp ΔmsbB::ailL2 mutant triggered similar humoral and cell-mediated immune responses in mice immunized via the i.m. route (Fig. 4 and 7A) and provided 100% protection to vaccinated animals when exposed to a high challenge dose of WT CO92 in a pneumonic plague model (Fig. 3).

A biased Th2 antibody response was observed in mice when vaccinated with the Δlpp ΔmsbB::ailL2 mutant by the s.c. route, which provided a slightly lower protection rate in immunized mice (67%) during subsequent pneumonic challenge. In comparison, an 88% protection rate with a balanced Th1 and Th2 antibody response and a higher T-cell proliferation were noticed in mice when they were vaccinated by the s.c. route with the Δlpp ΔmsbB Δail triple mutant (Fig. 3B, 4B, and 7B).

The reason for this phenomenon is not clear; however, additional animal models, such as rat or nonhuman primate models (NHP), may be needed to fully evaluate the immunogenic potential of the Δlpp ΔmsbB::ailL2 mutant. Indeed, studies have shown that Ail plays an even more important role in the pathogenesis of Y. pestis infection in a rat model of pneumonic plague compared to the mouse model (28, 31–33). In addition, a correlation between distinct IgG antibody subclasses and the Th1/Th2 profile seen in mice may differ in humans (64).

Of the two vaccination routes examined and based on the protection rates and the antibody and T-cell responses generated by the Δlpp ΔmsbB Δail triple mutant and the Δlpp ΔmsbB::ailL2 mutant in the mouse model, the i.m. route was certainly optimal compared to the s.c. route (Fig. 3, 4, 7, and 8). Our observation that a robust IL-17A recall response was only observed in T cells from mice that were immunized intramuscularly but not subcutaneously with the above-mentioned mutants was important.
(Fig. 8). A study has shown that injection of a vaccine into the layer of subcutaneous fat, where vascularization is poor, may result in slow mobilization and processing of the antigen (66). Compared to intramuscular administration, subcutaneous injection of hepatitis B vaccine leads to significantly lower seroconversion rates and more rapid decay of antibody response (66, 67). A similar phenomenon was reported with the rabies and influenza vaccines (68).

Recently, it was reported that intradermal inoculation of Y. pestis in C57BL/6J mice resulted in faster kinetics of infection compared to that of the subcutaneous route of inoculation due to the organism’s greater ability to access the vascular and lymphatic vessels in the dermis (69). Studies have shown that the dermis of the skin is enriched in terminal lymphatic vessels, which facilitate antigen uptake and the infiltration of immune cells to mount a stronger immune response compared to that of the subcutaneous layer (70–72). Therefore, future studies examining the intradermal route of immunization with our mutants will be undertaken.

IL-17A is a signature cytokine of Th17 cells that has been recently shown to provide an antibody-independent heterogeneous protection and also has been implicated in protecting the host against many pathogenic bacterial infections, including Y. pestis (73, 74). Interestingly, production of IL-17A from T cells was also observed in our previous study with the Δlpp ΔmsbB double mutant of WT CO92 when mice were intranasally immunized (27). Similarly, IL-17A was induced by the intranasal immunization of mice with the Y. pestis strain D27-ΔlpxL KIM/D27 that was engineered to express E. coli LpxL (75), which contributed significantly to the cell-mediated defense against pulmonary Y. pestis infection (74). Therefore, the induction of the Th17 response in addition to the Th1 and Th2 responses provided by the Δlpp ΔmsbB Δail triple mutant and the Δlpp ΔmsbB::ailL2 mutant might be beneficial in live-attenuated plague vaccines and need to be further studied.

The vaccine dose we used for each of our mutants (2 × 10^6 CFU/dose) was considerably lower than the 8 × 10^8 CFU/dose of the live-attenuated EV76 vaccine strain given to humans by the i.m. route in some countries and the 1 × 10^7 CFU/dose that has been used in murine studies (76–78). In addition, up to a 3 × 10^6 CFU/dose of EV76 has been used to immunize humans by the cutaneous route (79). The EV76 vaccine strain causes severe local and systemic reactions in animals and humans (80–83), and, more seriously, deaths have been reported in NHPs (82). In addition, a similar pgm-negative strain of Y. pestis retains virulence in mice and NHPs when administered by the intranasal (i.n.) and intravenous (i.v.) routes (57, 82, 84), raising serious questions about its suitability as a human vaccine (85). Indeed, a fatal laboratory-acquired infection with the pgm-negative KIM/D27 strain in an individual with hemochromatosis was reported recently (15), and mice infected intramuscularly with 10^5 CFU of KIM/D27 in our study also showed ruffled fur and lethargy for up to 7 days postinfection. However, mice immunized with up to 2 to 3.4 × 10^6 of either the Δlpp ΔmsbB Δail triple mutant or Δlpp ΔmsbB::ailL2 mutant via various immunization routes (i.n., i.m., and s.c.) did not display any local or systemic reactions or any adverse histopathological lesions (Fig. 5; see also Fig. S2 in the supplemental material) (17).

In summary, both of our Δlpp ΔmsbB Δail triple mutant and Δlpp ΔmsbB::ailL2 mutant have rationally designed in-frame deletions and, therefore, trigger a minimal inflammatory response. Most importantly, T cells isolated from mice immunized with either the Δlpp ΔmsbB Δail triple mutant or the Δlpp ΔmsbB::ailL2 mutant via the i.m. route displayed stronger proliferative responses than those of the KIM/D27-vaccinated mice (Fig. 7A). Therefore, the above-mentioned mutants might represent better plague vaccine candidates than the pgm-negative mutants for further development and testing in higher animal models.

ACKNOWLEDGMENTS
This research was supported by NIH/NIAID grants AI064389 and NO1-AI-30065 awarded to A. K. Chopra. We also acknowledge a UC7 grant (AI070083), which facilitated our research in the Galveston National Laboratory, UTMB, Galveston, TX. B. L. Tiner was supported through a predoctoral fellowship from the Sealy Center for Vaccine Development, Galveston, TX, and the McLaughlin Endowment Scholar Program, Galveston, TX.

We thank members of the Electron Microscopy Core Laboratory for their assistance in performing electron microscopy studies and members of W. B. Baze’s Histopathology Laboratory for rendering their help in histopathological examination of tissue specimens.

REFERENCES

