Development of a Rapid Diagnostic Kit That Uses an Immunochromatographic Device To Detect Antibodies in Human Sparganosis

Hiroshi Yamasaki, Takeshi Nakamura, Pewpan M. Intapan, Wanchai Maleewong, Yasuyuki Morishima, Hiromu Sugiyama, Hiroyuki Matsuoka, Kaoru Kobayashi, Katsuyoshi Takayama, Yukuharu Kobayashi

Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Department of Parasitology, Kitasato University School of Medicine, Kanagawa, Japan; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Division of Medical Zoology, Jichi Medical University, Tochigi, Japan; Division of Research and Development, Adtech Inc., Ltd., Oita, Japan

A diagnostic kit using an immunochromatographic device was developed to replace the time-consuming immunodiagnostic methods for human sparganosis. The kit was found to be faster and easier to use than an enzyme-linked immunosorbent assay (ELISA) and showed higher sensitivity and specificity. It will be useful for the laboratory diagnosis of hospitalized cases of sparganosis.

Sparganosis is a parasitic zoonosis caused by a larval plerocercoid (sparganum) of tapeworms belonging to the genus Spirometra. As the etiologic agents of the disease, Spirometra erinaceieuropaei (Rudolphi, 1819) Mueller, 1937 and Spirometra mansonioides Mueller, 1935, are important in Asia (1–8) and the Americas (1, 9), respectively.

In the life cycle of the parasite, freshwater copepods are the first intermediate hosts, and frogs, snakes, and chickens are the second intermediate or paratenic hosts. Carnivores, such as dogs and cats, are the definitive hosts. Humans can become infected by consuming raw or undercooked meat from frogs, snakes, or chickens infected with the larval plerocercoid, or by drinking water contaminated with copepods harboring a procercoid, which develops into a plerocercoid (9).

Once a human is infected, the plerocercoid grows and migrates preferentially into subcutaneous tissues and to the abdominal viscera and urogenital organs (1, 5, 6, 9, 10). A potentially painful inflammatory reaction develops in the surrounding tissue, causing the formation of subcutaneous nodules that may appear intermittently (11). The central nervous system and eyes are also affected (5, 11–14).

Although the detection of a plerocercoid is the gold standard method for diagnosing sparganosis, sparganosis is also diagnosed when IgG antibodies specific for plerocercoids are detected in the peripheral blood and cerebrospinal fluid (15–17). Methods for the detection of IgG antibodies have been established, including enzyme-linked immunosorbent assay (ELISA) (15, 18, 19), multidot ELISA (15, 20, 21), immunoblot (22), and two-dimensional immunoblot (23). These methods are time-consuming and require sophisticated equipment. We developed a simple and rapid diagnostic kit (iSpa) using an immunochromatographic device to replace the conventional methods.

To prepare a highly immunogenic cysteine proteinase as a diagnostic antigen (24–26), S. erinaceieuropaei plerocercoids were collected from subcutaneous tissues of a Japanese striped snake (Elaphe quadrivirgata, family Colubridae) and confirmed to be S. erinaceieuropaei by DNA analysis, as reported previously (3). The remaining plerocercoids were treated three times with 10 to 20 volumes of chilled acetone for 20 to 30 min and stored at −20°C. Since the purification method for the cysteine proteinase was only briefly reported previously (25), we describe the protocol in detail here. The defatted plerocercoids (dry weight, 10 g) were ground and then homogenized in 10 mM Tris-HCl (pH 7.6) containing 0.1 M NaCl, 1 mM EDTA, and 1 mM dithiothreitol (DTT) using a Polytron (Kinematica Co., Lucerne, Switzerland). After centrifugation at 170,000 g for 1 h at 4°C, the supernatant was treated with 35 to 50% saturated ammonium sulfate to precipitate the cysteine proteinase-rich protein fraction. After centrifugation at 10,000 × g for 1 h, the pellet was resuspended in 5 mM phosphate buffer (pH 7.0) containing 1 mM EDTA and 1 mM DTT and centrifuged at 260,000 × g for 1 h. The supernatant was acidified by adding 50 mM acetate buffer (pH 4.0) containing 5 mM EDTA and 1 mM DTT and incubated at 37°C for 90 min. After centrifugation at 10,000 × g for 1 h, the supernatant was adjusted to pH 6.0 with NaOH and concentrated in 40 to 65% acetone. After centrifugation at 10,000 × g for 1 h, the resultant precipitate was dialyzed against 1 mM NaHCO3 (pH 7.0) containing 1 mM EDTA and 1 mM DTT and then centrifuged at 260,000 × g for 1 h. A large amount (80 to ~100 mg) of purified cysteine proteinase was obtained from 10 g of defatted plerocercoids.

The human serum samples examined were as follows: parasitologically confirmed sparganosis cases (n = 13), other parasitic helminthiases (n = 74) that were diagnosed by stool examination and/or serological tests, and healthy volunteers (n = 59) who were proven by parasitological and/or serological tests to be free from any parasitic infections. The use of serum samples was approved by the Medical Ethics Committee of the National Institute of Infectious Diseases, Tokyo, Japan (no. 177), and the Human Ethics
Committee of Khon Kaen University, based on the Ethics of Human Experimentation of the National Research Council of Thailand (no. HE561396).

The iSpa kit using the cysteine proteinase was optimized based on the ELISA results using the cysteine proteinase at Adtech, Inc., Ltd., Oita, Japan. The ELISA was performed according to a previous report (27), except for the use of the cysteine proteinase (0.5 µg/ml) and peroxidase-labeled protein G (Zymed, South San Francisco, CA, USA). The kit consisted of an immunochromatographic device, sample buffer, and conjugate. The diagnostic reliability of the kit was evaluated as follows: serum samples were diluted 1:5 in sample buffer, and a 5-µl aliquot of the diluted serum was loaded onto the area inscribed “SAMPLE.” The cover was opened and one drop of peroxidase-labeled anti-human IgG was spotted onto “DROP” and the cover was closed. Finally, a bag was opened and one drop of peroxidase-labeled anti-human IgG serum was loaded onto the area inscribed “SAMPLE.” The cover was closed. A band at “C” is control line. (e) Reference pattern, levels 1 to 8.

FIG 1 iSpa kit developed in this study. Device with cover open (a) and closed (b). Sample, drop, and push indicate positions for loading of diluted serum sample, conjugate, and substrate solution, respectively. No band appears at test line “T” in the negative case (c), but a blue band becomes visible in the positive case (d). A band at “C” is control line. (e) Reference pattern, levels 1 to 8.

<table>
<thead>
<tr>
<th>Test type and results</th>
<th>No. with plerocercoid presence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
</tr>
<tr>
<td>iSpa kit</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td>−</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
</tr>
<tr>
<td>ELISA</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td>−</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
</tr>
</tbody>
</table>
infection; however, immunodiagnostic methods have been well established (15, 18–23). Although the definitive diagnosis of sparganosis is the detection of plerocercoid, there have been reported cases of sparganosis in which plerocercoids were not detected and the diagnosis was based on a decrease in antibody titers and eosinophil counts, as well as an improvement in clinical symptoms after chemotherapeutic intervention (32, 33). Therefore, a sparganosis case should be considered if an antibody against the plerocercoid is recognized by human sera.

In this study, a native cysteine proteinase was used as the diagnostic antigen. A recombinant cysteine proteinase is also available (34, 35), and both antigens can be easily produced in large amounts and may show high sensitivity and specificity compared to those of native antigens (35).

In conclusion, the iSpa kit has several advantages compared with conventional methods. It is a simple and rapid (~20-min) kit that does not need any technical experience or sophisticated equipment. The increased sensitivity and specificity of the kit provide a more reliable diagnostic result. It is expected that the iSpa kit will be a useful tool for laboratory diagnosis and for suspected cases for which biopsy and excision procedures are not feasible.

ACKNOWLEDGMENTS

We thank Maki Muto for technical assistance. This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Health, Labour and Welfare, Japan (H24–25-Shinko-Ippan-014), to H.Y. and by a TRF Senior Research Scholar Grant, Thailand Research Fund (RTA5580004), to P.M.I. and W.M.

We declare no conflicts of interest.

REFERENCES

23. Rahman M, Lee EG, Bae YA. 2011. Two-dimensional immunoblot analysis of antigenic proteins of Spirometra plerocercoid recognized by human

