Binding of Glucuronoxylomannan to the CD14 Receptor in Human A549 Alveolar Cells Induces Interleukin-8 Production

Fabiane M. Barbosa, Fernanda L. Fonseca, Rodrigo T. Figueiredo, Marcelo T. Bozza, Arturo Casadevall, Leonardo Nimrichter, and Marcio L. Rodrigues

Laboratório de Estudos Integrados em Bioquímica Microbiana, Departamento de Microbiologia Geral, and Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941590 Rio de Janeiro, Brazil, and Department of Microbiology and Immunology and Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461

Received 23 August 2006/Returned for modification 12 October 2006/Accepted 27 October 2006

Glucuronoxylomannan (GXM) is the major capsular polysaccharide of Cryptococcus neoformans. GXM receptors have been characterized in phagocytes and endothelial cells, but epithelial molecules recognizing the polysaccharide remain unknown. In the current study, we demonstrate that GXM binds to the CD14 receptor in human type II alveolar epithelial cells, resulting in the production of the proinflammatory chemokine interleukin-8.

Cryptococcus neoformans is an encapsulated fungal pathogen infecting mainly immunosuppressed patients. Infections are acquired by inhalation of desiccated cells, which are available in the environment as basidiospores or poorly encapsulated yeasts. Inhaled cells are deposited in the alveolar space, where they are ingested by macrophages (24) and interact with epithelial cells (2, 7, 8). An effective interaction of C. neoformans with epithelial alveolar cells is probably essential for the establishment of pulmonary infection. Microscopic studies of pulmonary cryptococcal infection reveal that yeast cells are in close apposition to lung epithelial cells (7). Once C. neoformans becomes established in the lung, it proliferates locally and causes a primary lesion that is usually contained by granuloma formation (10, 24). Two components of C. neoformans that are important for adhesion to human type II alveolar epithelial cells are phospholipase B (8) and glucuronoxylomannan (GXM) (2).

GXM is a virulence factor (4) that represents a potential vaccine component and is the target of therapeutic antibodies (3, 11, 17, 19). As the major constituent of the capsule, it is the primary component of a structure that is antiphagocytic and thus protects the fungal cell from immune cells. However, cryptococcal infections are also associated with the release of large amounts of GXM into host tissues, where they have many deleterious effects on the host immune response through multiple mechanisms (15). GXM has been reported to interact with numerous cellular receptors. Receptors for GXM in macrophages, neutrophils, and endothelial cells include Toll-like receptor 2 (TLR2), TLR4, CD14, and CD18 (12, 16, 25). The receptors for GXM in epithelial cells, however, remain to be characterized.

GXM was purified from strain T1-444 of C. neoformans (serotype A) by following standard methods (5) and incubated with A549 cells (100 μg/ml) for 1 h at 37°C (2). Binding of GXM to host cells was confirmed by immunofluorescence with the GXM-binding monoclonal antibody (MAb) 18B7 (3) (Fig. 1, inset). Lysates were obtained as described previously (21) and immunoprecipitated by sequential incubation with MAb 18B7 (3) and Sepharose-bound protein G. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the immunoprecipitated material indicated the presence of a major band with a molecular mass corresponding to 55 kDa (Fig. 1A). The same mixture analyzed by SDS-PAGE was boiled for 5 min to disintegrate protein-polysaccharide conjugates. GXM was then removed from this preparation by ultrafiltration (cut-off, 100 kDa), and the filtrate was incubated with Sepharose-bound protein G for antibody depletion. The purified fraction containing the GXM-binding protein, but no polysaccharide or antibodies, was concentrated to dryness and used to coat polystyrene 96-well plates (5 μg/ml, 100 μl/well). After the addition of GXM in serial dilutions, the plates were sequentially incubated for 1 h with MAb 12A1, a mouse immunoglobulin M (IgM) MAb with specificity for GXM (6), and a phosphatase-labeled goat anti-mouse antibody with specificity for IgM. Reactions were developed after the addition of p-nitrophenyl phosphate, followed by a reading at 405 nm. As demonstrated in Fig. 1B, the purified fraction binds GXM in a dose-dependent fashion.

CD14 is a 55-kDa glycosylphosphatidylinositol-anchored membrane protein found mainly on cells derived from the monocyte/macrophage lineage, as well as neutrophils and B lymphocytes (8, 18). This molecule, which is a member of the heteromeric lipopolysaccharide (LPS) receptor complex that also contains TLR4 and MD2 (17), is a GXM receptor in endocytic cells (12, 16, 25). This information and the molecular mass of the purified GXM-binding protein presented in Fig. 1A led us to investigate whether CD14 could be the GXM receptor expressed by A549 cells. Human cells were detached from culture plates using 1 mM EDTA and fixed in 4% para-
formaldehyde. After blocking with Tris-buffered saline containing bovine serum albumin, A549 cells were incubated with a phycoerythrin (PE)-labeled mouse MAb to CD14 (BD Biosciences, San Jose, CA). Analysis in a FACSCalibur (BD Biosciences, San Jose, CA) flow cytometer revealed that A549 cells express CD14 (Fig. 2A), confirming previous reports (9, 20, 23). Control cells, incubated with an irrelevant PE-labeled antibody, presented low levels of fluorescence.

Given our recent observations that C. neoformans efficiently infects A549 cells (2), we evaluated whether a CD14-binding molecule would interfere with this process. Untreated human cells or an A549 population that was pretreated with LPS (10 μg/ml) for 1 h was incubated with C. neoformans under previously established conditions (2). The index of association between cryptococci and alveolar cells was measured as the reactivity of A549 cells with MAb 18B7 in flow cytometry assays (2), which showed that the efficacy of the interaction of cryptococci with untreated cells was higher than that observed with LPS-treated epithelia (Fig. 2B). Controls consisted of similar preparations that were not infected with C. neoformans. Pretreatment of A549 cells with anti-CD14 antibodies also resulted in a lower association between C. neoformans and host cells (data not shown).

To confirm that CD14 is indeed a GXM-binding molecule in human alveolar cells, a modification of classical immunoprecipitation methods was used. Lysates of GXM-treated cells, presumably containing polysaccharide-CD14 complexes, were added to the wells of a 96-well plate previously coated with the

![FIG. 1. Purification of a GXM-binding molecule from A549 cells by immunoprecipitation. (A) Protein extracts from GXM-treated human cells were sequentially incubated with MAb 18B7 and Sepharose-bound protein G for further analysis by SDS-PAGE. GXM binding to epithelial cells was confirmed by immunofluorescence with MAb 18B7 (inset). An A59 cell observed under differential interferential contrast (a) and fluorescence (b) modes is shown. A single major protein with a molecular mass corresponding to 55 kDa was detected. The purified fraction was used in GXM-binding assays in 96-well plates. (B) Dose-dependent binding of the 55-kDa protein to GXM detected by an IgM MAb to GXM.](http://cvi.asm.org/)

![FIG. 2. Expression of CD14 by A549 cells. (A) Flow cytometric analysis of human cells incubated with a PE-labeled MAb to CD14 demonstrating that the receptor is expressed on the surface of A549 cells. Unstained (a) and antibody-treated (b) cells are shown. (B) Pretreatment of human cells with LPS, a CD14-binding compound, decreases their association with cryptococci. The increase in fluorescence after incubation of infected cells with MAb 18B7 was used to identify A549 cells in association with cryptococci. Infected cells that were pretreated with LPS (b) presented a reduced reaction with MAb 18B7, in comparison with untreated cells (c). The fluorescence levels of uninfected cells is shown in panel a.](http://cvi.asm.org/)
anti-GXM IgM 12A1. After successive blocking and washing, the plate was incubated with a mouse MAb (IgG) to CD14 (BD Biosciences, San Jose, CA) and then with a phosphatase-labeled goat antibody with specificity for mouse IgG. CD14 was coprecipitated with GXM, as suggested by the dose-dependent recognition of complexes by the anti-CD14 antibody (Fig. 3). Controls consisted of similar assays in which lysates from GXM-treated cells were replaced by extracts from untreated alveolar cells. Additional controls included enzyme-linked immunosorbent assays (ELISAs) in which A549 lysates (positive control) and protein extracts from Chinese hamster ovary cells (negative control) were used to coat the plates, followed by sequential incubation with the anti-CD14 MAb and phosphatase-labeled secondary antibodies.

![FIG. 3. Identification of CD14 as the epithelial receptor for GXM in A549 cells. CD14-GXM complexes (triangles) from polysaccharide-treated cells were captured by IgM antibodies in ELISA. An anti-CD14 was used as the detection probe, as demonstrated in the schematic presentation of the capture ELISA (inset). No significant reactions with the anti-CD14 antibody were observed when protein extracts from untreated cells (inverted triangles) were used. Additional controls included an ELISA in which A549 lysates (positive control; squares) and protein extracts from Chinese hamster ovary cells (negative control; circles) were used to coat the plates, followed by sequential incubation with the anti-CD14 MAb and phosphatase-labeled secondary antibodies.](http://cvl.asm.org/)

The association of microbial compounds with CD14 in alveolar cells can elicit the secretion of proinflammatory cytokines (20). We therefore speculated whether A549 cells could produce a cytokine response activated by GXM. For cytokine determinations, the culture medium was replaced by fresh medium containing no serum but supplemented with 10 μg/ml GXM. After 4 h at 37°C in a 5% CO2 atmosphere, culture supernatants were collected and assayed for cytokines by using a RayBio human cytokine antibody array (RayBiotech, Inc.). Procedures followed the manufacturer’s protocol. Cytokine production was quantified by using Scion Image 2000 software (Scion Corporation, NIH). Twenty cytokines were assayed, and under our experimental conditions, the production of interleukin-8 (IL-8) by GXM-treated cells was considered to be significantly different from that detected in nonstimulated supernatants (Fig. 4). GXM induced the secretion of growth-related oncogene α and IL-3 by human cells (data not shown), although the results obtained with the control and GXM-treated cells were not significantly different.

Since the CD14-LPS association resulted in IL-8 production by epithelial cells in previous studies (20), we investigated whether binding of GXM to CD14 molecules would have the same effect. Supernatants of nonstimulated A549 cells or of human cells after treatment for 1 h with LPS (positive control, 10 μg/ml), C. neoformans (2), or GXM (100 μg/ml) were col-

![FIG. 4. Production of IL-8 by GXM-treated cells. Supernatants of untreated (−) or polysaccharide-treated (+) cells were collected for cytokine detection. An increased production of IL-8 was observed in supernatants of GXM-treated cells.](http://cvl.asm.org/)
The error bars were generated from multiple trial wells (n = 3) of each single sample.

a Results are representative of three different assays producing similar results. The error bars were generated from multiple trial wells (n = 3) of each single sample.

b IL-8 levels produced under our experimental conditions were significantly smaller than 0.05. Values were obtained by the use of Student’s t test, after comparison with results of control systems (no stimulation). Differences between results with stimulated systems and control cells were considered statistically significant when P values were smaller than 0.05.

c IL-8 levels were significantly higher (P < 0.01) than those obtained in A549 cells that first were treated with the antibody to CD14.

In microbial infections, a primary function of the airway epithelium is to act as a physical barrier for the exclusion of inhaled infectious propagules. However, there is increasing evidence that lung cells can induce a localized immune response through the production of a variety of mediators, including proinflammatory cytokines and chemokines (1). These mediators could act, for example, to recruit polymorphonuclear leukocytes from the pulmonary vasculature into the alveolar space. With fungi, it has been demonstrated that Aspergillus fumigatus proteases elicit IL-6 and IL-8 production in lung epithelial cells in vivo and in vitro (26). In cases of cryptococcosis, the production of these proinflammatory mediators is associated with the survival of human patients (22).

TABLE 1. Stimulation of A549 cells with GXM results in CD14-mediated production of IL-8a

<table>
<thead>
<tr>
<th>Treatment of A549 cellsb</th>
<th>Supernatant IL-8 (ng/ml)</th>
<th>Mean ± SD</th>
<th>P*</th>
<th>Statistical significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.82 ± 0.06</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>LPS (10 µg/ml, 1 h)</td>
<td>1.33 ± 0.01</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>C. neoformans (10 yeast cells/host cell)</td>
<td>1.06 ± 0.01</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>GXM (100 µg/ml, 1 h)d</td>
<td>1.18 ± 0.03</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Anti-CD14 (10 µg/ml), then GXM (100 µg/ml)</td>
<td>0.54 ± 0.12</td>
<td></td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

REFERENCES

